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3. óra

Ciklikus koordináták

A mai órán további megmaradó mennyiségekkel foglalkozunk: ezeknek első példája a ciklikus
koordinátákra vezethető vissza. Velük már találkoztunk, csak nem nevesítettük őket. Ha a
Lagrange alakja

L(x, y, ẋ, ẏ) = L(x, ẋ, ẏ) = K(x, ẋ, ẏ)− V (x)

tehát az egyik koordinátát nem tartalmazza expliciten, akkor az a koordináta ciklikus. Ekkor a rá
vonatkozó Euler-Lagrange egyenlet alapján

d
dt

∂L
∂ẏ

=
∂L
∂y

= 0

a hozzá tartozó py = ∂ẏL által definiált általános lendület időderiváltja nulla: ő egy megmaradó,
lendület-szerű mennyiség.

3.1. példa: Csúszó ék - Tömegközéppont

Térjünk vissza ismét a csúszkáló alakzatokhoz, és használjuk ezt a példát egy általános trükk
megismerésére. Ha nincsenek külső erők akkor a tömegközéppont gyorsulása nulla. Ebben a
példában csak y irányban hat külső erő (a gravitáció): jó ötlet lehet ezért az x irányban megnézni
egy tömegközéppont-szerű mennyiséget.

1. ábra. Csúszó ék ábrája.

Legyenek az x1 és x2 helyett az új koordinátáink (emlékezve hogy a két x koordinátát ellenkező
előjellel vettük fel)

R =
Mx1 −mx2

M +m
és r = x1 + x2 (3.1.1)

Térjünk át ezekre a koordinátákra, és vegyük figyelembe velük a kényszereket. Visszaidézve a
kényszermentes Lagrange-ot:

L =
1

2
Mẋ1

2 +
1

2
Mẏ1

2 +
1

2
mẋ2

2 +
1

2
mẏ2

2 +mgy2 (3.1.2)

A kényszereink most y1 = konst. és y2 = r tanφ tehát a potenciál egyszerűen

V = −mgr tanφ (3.1.3)

ami már csak az egyik koordinátától függ.
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A kinetikus tagban viszont történhetnek még csúnyaságok. Következő lépésként invertálnunk
kell az új koordinátáink definícióját a régikre. Ez favágó módszerrel

x1 = r − x2 x2 =
M

m
x1 −

M +m

m
R (3.1.4)

x2 = r − x1 x1 =
m

M
x2 +

M +m

M
R (3.1.5)

egyenletrendszerre vezet, amik kicsit alakítva

x1 =
m

M
(r − x2) +

M +m

M
R x2 =

M

m
(r − x1)−

M +m

m
R (3.1.6)

x1 =
m

M +m
r +R x2 =

M

M +m
r −R (3.1.7)

Egy fokkal haladóbb út az, ha ezt mátrixosan írjuk:(
R
r

)
=

(
M

M+m − m
M+m

1 1

)(
x1
x2

)
(3.1.8)

A fenti mátrixot invertálva (aminek részleteit később gyakoroljuk)(
x1
x2

)
=

(
1 m

M+m

−1 M
M+m

)(
R
r

)
(3.1.9)

ugyanezt az eredményt kapjuk.
Minden esetre ezzel ki tudjuk fejezni a kinetikus tagunk x komponenseit. Némi algebra után

Mẋ1
2 +mẋ2

2 = M

(
m

M +m
ṙ + Ṙ

)2

+m

(
M

M +m
ṙ − Ṙ

)2

(3.1.10)

=
m2M

(M +m)2
ṙ2 +MṘ2 + 2

mM

M +m
ṙṘ+

mM2

(M +m)2
ṙ2 +mṘ2 − 2

mM

M +m
ṙṘ

(3.1.11)

= m
mM

(M +m)2
ṙ2 +M

mM

(M +m)2
ṙ2 + (M +m)Ṙ2 (3.1.12)

=
mM

M +m
ṙ2 + (M +m)Ṙ2 (3.1.13)

Bevezetve a µ redukált tömeget

µ =
mM

M +m
(3.1.14)

A teljes Lagrange-függvényünk

L =
1

2
(M +m)Ṙ2 +

1

2
µṙ2 +

1

2
mṙ2 tan2 φ+mgr tanφ (3.1.15)

Ebben már szépen látszik, hogy az R koordináta sehol sem szerepel explicite: tehát a rá vonatkozó
Euler-Lagrange egyenlet alapján

R̈ = 0 (3.1.16)
Mẍ1 −mẍ2 = 0 (3.1.17)
Mẋ1 −mẋ2 = konst. (3.1.18)
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Tehát a tömegközéppont mozgásának x komponense az, ami itt egy ciklikus koordináta. A hozzá
tartozó lendület nem más, mint az x irányú összlendület: ez egy megmaradó mennyiség. Mellesleg a
másik, relatív koordinátára vonatkozó Euler-Lagrange eredménye

(µ+m tan2 φ)r̈ = mg tanφ (3.1.19)

visszaadja a múlt órán látott mozgásegyenletet. Eszerint a két test állandó

r̈ =
mg tanφ

µ+m tan2 φ
(3.1.20)

gyorsulással távolodik egymástól az x irányban. A múlt heti eredményeinket összeadva pontosan ezt
a gyorsulást kapjuk, jópár algebrai lépés után amit most megspórolunk azzal, hogy elhisszük.

3.2. példa: Mozgás hengeren

Bár kétségtelenül ők a leggyakoribbak, nem csak Descartes-i és gömbi koordináták léteznek. Nézzünk
most egy példát, ahol hengeres (ρ, φ, z) koordinátázás lesz célravezető. Vegyünk egy R sugarú,
végtelenül magas hengert. Erre rögzítünk egy tömegpontot úgy, hogy csak a henger felületén
mozoghat; majd bekapcsolunk egy erőt, ami az origó felé vonzza a tömegpontot, méghozzá

F⃗ = −kr⃗ (3.2.1)

alakban. Mi lesz a pálya, ha elindítjuk a tömegpontot?

2. ábra. Henger felületére korlátolt pont koordinátázása.

Először is: kellenek az energiák. A potenciál helyett itt most az erő van megadva, de ha még
emlékszünk, hogy

F⃗ = −∇⃗U (3.2.2)

akkor visszakövetkeztethetünk rá, mint

U =
1

2
kr⃗ 2 =

1

2
kr2 (3.2.3)
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Itt r a távolság az origótól: ő még nem hengeres. Kis Pitagorasz tétellel viszont

r2 = z2 + ρ2 (3.2.4)

tehát a potenciális tag hengerkoordinátákban:

U =
1

2
k(z2 + ρ2) (3.2.5)

Ahova még beírhatjuk a ρ = R kényszerünket:

U =
1

2
k(z2 +R2) (3.2.6)

Kérdés még a kinetikus tag: milyen irányokban lehet sebessége a részecskének? A három hengeres
irány közül csak ρ nem játszhat, mert a felületre vagyunk korlátozva, így marad z és φ. Hogy az
utóbbiból sebességet csináljunk, meg kell javítani a dimenzióját egy hossz mértékegységű sugár
szorzóval, ami itt ρ = R.

K =
1

2
mż2 +

1

2
mR2φ̇2 (3.2.7)

A teljes Lagrange tehát:

L =
1

2
mż2 +

1

2
mR2φ̇2 − 1

2
k(z2 +R2) (3.2.8)

Ami két változótól függ: z és φ. Mostmár felfegyverkezve viszont a ciklikus koordináták ismeretével,
rögtön láthatjuk, hogy nincs explicit φ függés benne, tehát

∂L
∂φ

= 0 (3.2.9)

amiből következik, hogy
∂L
∂φ̇

= mR2φ̇ = konst. (3.2.10)

Ez egy megmaradó mennyiség, mint az előző példában az impulzus volt. Ahogy itt most φ
egy általános koordináta, a hozzá tartozó mR2φ̇ mennyiség egy általános impulzus. Mivel ez a
koordináta ciklikus (nincs explicit a Lagrange-ban), a hozzá tartozó általános impulzus megmarad.
Kis átalakítással egyébként

p̃φ = R ·mRφ̇ = R ·mv⊥ = R · p⊥ = L (3.2.11)

ez nem más mint a perdület.
Minden esetre, már az Euler-Lagrange felírása nélkül tudunk valamit a pályáról: a körkörös

komponense a mozgásnak csupán egy állandó sebességű keringés lesz. Marad még a z komponens,
amire már kell az Euler-Lagrange:

∂L
∂z

= −kz
∂L
∂ż

= mż (3.2.12)

mz̈ = −kz (3.2.13)

z̈ = − k

m
z = −ω2z (3.2.14)

Ez szintén egy ismerős diffegyenlet lehet: a harmonikus oszcillátoré. Megoldása:

z(t) = A cos (ωt+ c) (3.2.15)

Összesítve a találtakat: a részecskénk körkörösen egyenletes sebességgel fog keringeni, míg a z
irányban fel-le oszcillál.
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Noether-tétel

Megbarátkoztunk kicsit az általános impulzusokkal. Ezeket gyakran tudtuk összekötni egy vizuális
megfigyeléssel a problémánkról: az x tengelyen eltolható rendszereknél mindig megmarad az x irányú
lendület, a forgásszimmetrikus feladatokban pedig a perdület. Ezt a megfigyelést formalizálja, és
általánosítja a Noether-tétel:

A Lagrange-függvény minden szimmetriájához tartozik egy megmaradó mennyiség.

Matematikailag ez azt jelenti, hogy a q változóinkat eltranszformáljuk valahogy (pl. elforgatjuk)

q⃗ −→ T (q⃗) ≈ q⃗ + ϵ φ⃗

ami sorbafejthető az identitás transzformáció (ie.: nem csinálunk semmit, q⃗ → q⃗) körül. Ha erre a
transzformációra változatlan a Lagrange függvényünk, akkor

P =
∂L
∂ ˙⃗q

φ⃗ =
∑
i

∂L
∂q̇i

φi = p⃗φ⃗

állandó. Nézzünk erre pár példát!

3.3. példa: 2D rugó

3.3.1. Descartes

Vegyünk egy egyszerű rugós testet egy síkban, és írjuk fel a Lagrange-át sima Descartes-i koordiná-
tákban. Ahogy az előbb láthattuk, a rugó potenciális energiája 1

2kr⃗
2, tehát

L =
1

2
m(ẋ2 + ẏ2)− 1

2
k(x2 + y2) (3.3.1)

Nézzük meg az

x → x+ ϵ y y → y − ϵ x (3.3.2)

transzformációt, tehát ha φ⃗ = (y, −x)! Ez mellesleg úgy is írható, mint(
x
y

)
−→

(
1 ϵ
−ϵ 1

)(
x
y

)
(3.3.3)

Ezt nézegetve kicsit, felismerhetjük hogy sin ϵ ≈ ϵ és cos ϵ ≈ 1, tehát ő nem más mint egy forgásmátrix
közelítése.

Nézzük meg, hogy invariáns-e erre a transzformációra a Lagrange, kezdve a kinetikus taggal.
Véve a deriváltakat:

ẋ → d
dt

(x+ ϵ y) = ẋ+ ϵẏ ẏ → d
dt

(y − ϵ x) = ẏ − ϵẋ (3.3.4)

amik négyzetei:

ẋ2 → ẋ2 + 2ϵẋẏ + ϵ2ẏ2︸︷︷︸
≈0

ẏ2 → ẏ2 − 2ϵẋẏ + ϵ2ẋ2︸︷︷︸
≈0

(3.3.5)

Tehát a kinetikus tag:

K → 1

2
m(ẋ2 + ẏ2 + 2ϵẋẏ − 2ϵẋẏ︸ ︷︷ ︸

=0

) = K (3.3.6)
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változatlan. Ugyanezt eljátszva a potenciális taggal:

V → 1

2
k(x2 + y2 ++2ϵxy − 2ϵxy︸ ︷︷ ︸

=0

) = V (3.3.7)

az is ugyanúgy néz ki, tehát ez egy szimmetria.
Ha már tujduk, hogy szimmetriáról beszélünk, nézzük meg mi marad meg a Noether-tétel szerint.

Deriválva a Lagrange-ot a sebességek szerint megkapjuk az általános lendületeket:

px =
∂L
∂ẋ

= mẋ py =
∂L
∂ẏ

= mẏ (3.3.8)

amiket be kell szorozni még az infinitezimális φ tagokkal:

P =
∂L
∂ẋ

φx +
∂L
∂ẏ

φy (3.3.9)

= mẋ · y −mẏx (3.3.10)
= pxy − pyx (3.3.11)

Ami nem más, mint a rendszer perdülete.

3.3.2. Polár

Írjuk most fel ugyanezt, csak polárkoordinátákban, a rugó végéből a testhez mutató ϑ szöggel és a
rugó relatív megnyúlását leíró R távolsággal. Ekkor a Lagrange

L =
1

2
m(Ṙ2 +R2ϑ̇2)− 1

2
kR2 (3.3.12)

Láthatjuk, hogy ϑ ciklikus, tehát az általános pϑ lendület megmarad, amiről már beláttuk korábban,
hogy a perdület. Ez konzisztens az előző feladatrésszel, de gyakorlásképp nézzük meg mi lesz most
az eltolás amire invariáns a Lagrange. A valóságban úgyis ez a nehezebb része a feladatoknak.

A változók transzformálása nem függ azok deriváltjaitól, ezért általában először a potenciális
energiát érdemes nézegetni. Itt most ez teljesen független ϑ-tól, tehát ott tetszőleges

φ⃗ =

(
0
α

)
azaz R → R+ 0, ϑ → ϑ+ ϵα (3.3.13)

transzformációk működnek. A kinetikus tagunkban viszont szerepel ϑ̇: hogy az változatlan maradjon,
igaznak kell lennie

Ṙ2 +R2ϑ̇2 = Ṙ2 + Ṙ2(ϑ̇+ ϵα̇)2 (3.3.14)

összefüggésnek. Ezt kicsit kibontva:

Ṙ2 +R2ϑ̇2 = Ṙ2 + Ṙ2(ϑ̇2 + 2ϵϑ̇α̇) (3.3.15)

ϑ̇α̇ = 0 (3.3.16)
α̇ = 0 (3.3.17)

azt látjuk, hogy a szög transzformációja nem más, mint egy konstans eltolás. A hozzá tartozó
megmaradó mennyiség pedig:

P = mR2ϑ̇ · α (3.3.18)

ismét a perdület, egy konstans α szorzó erejéig. Ezt bele lehet olvasztani az ϵ-ba, és vehető egynek.
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3.4. példa: Hengerben henger

Vegyünk egy M tömegű, R sugarú üres hengert. Rakjunk bele egy másik, m tömegű r sugarú
hengert. A nagyot kezdjük el megforgatni valamilyen β̇ sebességgel, a kicsit pedig hagyjuk csúszni:
mi lesz ekkor a Lagrange, mik a szimmetriái és a megmaradó mennyiségei?

3. ábra. Forgó hengerbben guruló henger.

Nézzük meg először a feladat nehezét: a paraméterezést. Hol van a kis henger középpontja
tetszőleges időpontban? Ehhez két dolgot kell tudnunk: a csúszásmentes mozgás feltételét, és egy
kis geometriát. Utóbbihoz segít a 4. ábra.

4. ábra. Paraméterezést segítő ábra a hengerekről.

Ha csúszás nélkül történne a mozgás, akkor az érintkzési pontokban megegyeznének a kerületi
sebességek, tehát

rα̇0 = Rβ̇0 (3.4.1)

És mivel nem lenne csúszás, a kis henger középpontja ott is maradna, ahol volt. Ha ez a feltétel
viszont nem teljesül, akkor el fog mozdulni a kör körül, valamilyen rα̇−Rβ̇ sebességgel. Ez alatt
megtesz a kis henger középpontja valamennyi ∆l utat a nagy középpontja körül, méghozzá

∆l = rα−Rβ (3.4.2)
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Tehát kis geometriával tetszőleges (α, β) változóknál a kis henger középpontjához kellő szög:

ϑ =
rα−Rβ

R− r
(3.4.3)

Ezzel a kis kör középpontjának (xm, ym) koordinátái:

xm = (R− r) sin
rα−Rβ

R− r
ym = (R− r) cos

rα−Rβ

R− r
(3.4.4)

Az utóbbival gyorsan fel is tudjuk írni a potenciális energiát, mint

V = −mg(R− r) cos
rα−Rβ

R− r
(3.4.5)

A kis henger kinetikus energiájához nem elég tudni a középpontját: a kerületén lévő pontok szép
gyorsan keringhetnek, szóval nekik is lesz kinetikus energiájuk. Egy tetszőleges pontja a kis körnek:

x = xm + r sinα y = ym − r cosα (3.4.6)

x = (R− r) sin
rα−Rβ

R− r
+ r sinα y = (R− r) cos

rα−Rβ

R− r
− r cosα (3.4.7)

Ezeket deriválva:

ẋ = cos
rα−Rβ

R− r
(rα̇−Rβ̇) + rα̇ cosα ẏ = − sin

rα−Rβ

R− r
(rα̇−Rβ̇) + rα̇ sinα (3.4.8)

Amiből a kinetikus tagba szükséges négyzetösszegük:

ẋ2 + ẏ2 = r2α̇2 + (rα̇−Rβ̇)2 (3.4.9)

ẋ2 + ẏ2 = 2r2α̇2 +R2β̇2 − 2rRα̇β̇ (3.4.10)

Tehát a kis henger kinetikus tagja:

Km = mr2α̇2 −mrRα̇β̇ +
1

2
mR2β̇2 (3.4.11)

A nagy henger már egyszerűbb: az csak forog a tengelye körül, így

KM =
1

2
MR2β̇2 (3.4.12)

Tehát a teljes Lagrange:

L =
1

2
MR2β̇2 +mr2α̇2 −mrRα̇β̇ +

1

2
mR2 +mg(R− r) cos

rα−Rβ

R− r
(3.4.13)

Keressünk ebben valamilyen szimmetriát! Induljunk mi megint a potenciális energiából, azon
belül is a cos tagból. Kis alakítással:

cos
rα−Rβ

R− r
= cos

(
r
α− R

r β

R− r

)
(3.4.14)

Ez alapján tippeljük be a: (
α
β

)
−→

(
α
β

)
+ ϵ

(
1
r
R

)
(3.4.15)

alakú konstans transzformációt. Ezt nézegetve láthatjuk, hogy az α szöget, tehát a belső hengert
elforgatjuk valamilyen ϵ szöggel; míg a külsőt a r

Rϵ-al. Visszaidézve a csúszásmentes forgás feltételét,
azt ez pont teljesíti.
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Nézzük meg mi lesz a hozzá tartozó megmaradó mennyiség is. Véve az általános lendületeket:

pα =
∂L
∂α̇

= r2mα̇−mrRβ̇ (3.4.16)

pβ =
∂L
∂β̇

= R2Mβ̇ −mrRα̇ (3.4.17)

Majd megszorozva az infinitezimális trafókkal:

P = (r2mα̇−mrRβ̇) + (R2Mβ̇ −mrRα̇)
r

R
(3.4.18)

= (r2mα̇−mrRβ̇ +RrMβ̇ −mr2α̇) (3.4.19)

= (M −m)rRβ̇ (3.4.20)

lesz a megmaradó mennyiségünk.

Közelítések

Gyakran előfordul, hogy a mozgásegyenletek amiket megkapunk nem oldhatók meg kézzel, vagy
legalábbis nem könnyen. Ilyenkor nagyjából három lehetőség van:

• Numerikusan oldjuk meg őket, például python-ban a scipy csomaggal.

• Megnézzük a rendszer egyensúlyi pontjait, és azokról próbálunk meg valami okosat mondani.

• Addig közelítünk, amíg meg nem tudjuk oldani kézzel.

Most az utolsó ponttal fogunk foglalkozni. A közelítéseknek első lépése, hogy feltesszük egy változóról
hogy pici, például φ ≪ 1. Ekkor φ összes függvényét ami megjelenik a problémánkban Taylor-sorba
tudjuk fejteni a nulla körül tetszőleges rendig, ami gyakran már kezelhetőbb.

Emlékeztetőül tetszőleges f(x) függvénynek az a pont körüli Taylor sora:

f(x) ≈ f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 +O(x3)

például

sinx ≈ sin 0 +
cos 0

1!
(x− 0) +

− sin 0

2!
(x− 0)2 + · · · = x+O(x3)

ln (1 + x)2 ≈ ln (1 + 0)2 +

2(1+0)
(1+0)2

1!
(x− 0) + · · · = 2x+O(2)

Őt hasznos gyakorolni, ha eddig lemaradt volna: az elemi függvények sorfejtését könnyű megkeresni,
de az összetettekét már gyakran manuálisan kell kiszámolnunk.
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3.5. példa: Inga

Bemelegítésként először írjuk fel a sima inga problémáját Lagrange-osan, polárkoordinátákkal. A
kényszermentes Lagrange-függvény két tagja, ha origónak a felfüggesztési pontot vesszük:

K =
1

2
mẋ2 +

1

2
mẏ2 (3.5.1)

V = mg(l − y) = −mgy + V0 (3.5.2)

Ebbe jön majd a kényszerünk, miszerint x2 + y2 = l2. Áttérve polárkoordinátákra

x = l sinφ és y = l cosφ (3.5.3)

ez automatikusan teljesül, és a Lagrange-unk alakja

L =
1

2
ml2φ̇2 +mgl cosφ (3.5.4)

A szükséges deriváltak
∂L
∂φ̇

= ml2φ̇ és
∂L
∂φ

= −mgl sinφ (3.5.5)

illetve
d
dt

∂L
∂φ̇

= ml2φ̈ (3.5.6)

Amikből adódik a mozgásegyenlet:
φ̈ = −g

l
sinφ (3.5.7)

ami már ismerős lehet az előző óráról. Emlékeztetőül ott bevezettük ω =
√
g/l-et, aztán kis

szögekre közelítettünk mint φ ≪ 1, amelynek eredményeképp

φ̈ ≈ −ω2φ (3.5.8)

egy harmonikus oszcillátort kapunk. Innen ered a közelítő eredmény az inga keringési idejére:

T ≈ 2π

ω
= 2π

√
l

g
(3.5.9)

Ez mind szép és jó, viszont a közelítést már a mozgásegyenlet utolsó alakjában alkalmaztuk. Ez
a precízebb és biztosabb mód: mégis kíváncsiak lehetünk, hogy lehet-e előbb. A válasz az, hogy igen,
ha óvatosak vagyunk.

Kezdjük rögtön a Lagrange-al:

L =
1

2
ml2φ̇2 · 1 +mgl · cosφ (3.5.10)

És közelítsünk a potenciális energiában másodrendig:

L ≈ 1

2
ml2φ̇2 · 1 +mgl ·

(
1− φ2

2

)
(3.5.11)

Két tagot kaptunk: az első egy konstans, ami nem befolyásolja a fizikát, ezért lehagyható. A többi:

L ≈ 1

2
ml2φ̇2 · 1− 1

2
mgl · φ2 (3.5.12)

Ebből kiszámolva a mozgásegyenletet, az eredmény

φ̈ ≈ −ω2φ (3.5.13)

pont ugyanaz, amit az előbb kaptunk.
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3.6. példa: Rugós inga

Cseréljük le az előző feladat ingájának madzagát egy rugóra: mi lesz ekkor a mozgásegyenlet kis
kitérésekre?

5. ábra. Rugós inga rajza. Itt x helyett R-el fogom jelölni a megnyúlását, az eredeti hosszát pedig
l0-al.

3.6.1. Általános megoldás

Ha belevesszük a rugót is:

Vrugó =
1

2
k∆l2 (3.6.1)

ahol ∆l fejezi ki, hogy mennyire nyúlt meg a rugó az eredeti l0-hoz képest. Descartes-i koordinátákkal:

x2 + y2 = l2 = (l0 +∆l)2 (3.6.2)

∆l =
√
x2 + y2 − l0 (3.6.3)

Hogy kiválasszuk a jó koordinátákat, gondolkodjunk kicsit a feladaton. Két dolgunk van: ingánk
és rugónk. Az inga láttuk milyen jól illeszkedik a poláros koordinátázáshoz. A rugóban pedig az
jelenik meg, hogy mennyit nyúl meg sugárirányban. Legyen a két változónk φ, az inga kitérési szöge,
és R, az inga megnyúlása az eredeti l0 hosszához képest. A régi változók nyelvén tehát:

x2 + y2 = l2 = (l0 +R)2 (3.6.4)
x = l sinφ = (l0 +R) sinφ (3.6.5)
y = l cosφ = (l0 +R) cosφ (3.6.6)

Milyen sebességek jelennek meg a kinetikus tagban? Lesz egyrészt a sugárirányú sebesség, ami azt
mondja meg, hogy mennyire változik éppen R:

Kr =
1

2
mṘ2 (3.6.7)

és lesz egy erre merőleges komponens, ami az érintő irányú sebesség lesz. Ez pedig a φ̇ szögsebesség
szorozva az (l0 +R) sugárral, tehát

Kφ =
1

2
m(l0 +R)2φ̇2 (3.6.8)
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Ezeket összeadva pont ugyanazt kapjuk, mint amit a biztosabb behelyettesítéses módszerrel kaptunk
volna.

A rugó potenciális energiája így már nagyon egyszerű:

Vrugó =
1

2
kR2 (3.6.9)

Cserébe a gravitációs potenciális energiánk lesz picit csúnyább:

Vgrav. = mg(l0 +R)(1− cosφ) (3.6.10)

Ezzel kész is a Lagrange-unk:

L =
1

2
mṘ2 +

1

2
m(l0 +R)2φ̇2 +mg(l0 +R)(cosφ− 1)− 1

2
kR2 (3.6.11)

és jöhetnek is az Euler-Lagrange egyenletek. Két változónk van, tehát kettő lesz:

∂L
∂R

= m(l0 +R)φ̇2 +mg cosφ−mg − kR
∂L
∂Ṙ

= mṘ (3.6.12)

∂L
∂φ

= −mg(l0 +R) sinφ
∂L
∂φ̇

= m(l0 +R)2φ̇ (3.6.13)

Amikkel elvégezve a deriválásokat:

(l0 +R)φ̇2 + g cosφ− g − k

m
R =R̈ (3.6.14)

−g(l0 +R) sinφ = 2(l0 +R)Ṙφ̇+ (l0 +R)2φ̈ (3.6.15)

Kicsit még szépítve:

R̈ =(l0 +R)φ̇2 + g(cosφ− 1)− k

m
R (3.6.16)

(l0 +R)φ̈ = −2Ṙφ̇− g sinφ (3.6.17)

Ezt már be lehet küldeni a kedvenc numerikus megoldónknak, és meg is lesznek a pályák.

3.6.2. Közelítés

Arra vagyunk kíváncsiak, hogy kis kitérésekre mi lesz a megoldás. Ez itt két dolgot jelent: a szög is
kicsit tér ki az egyensúlyi helyzetéből, és a rugó is. Tehát

φ ≪ 1 és R ≪ l0 (3.6.18)

Ha még nem megy magabiztosan a közelítés, akkor csináljuk a következőt: legyen

φ = εφ0 és R = εR0 (3.6.19)

ami dimenziósan korrekt. Ezt beírva a mozgásegyenleteinkbe, illetve a szögfüggvényeket Taylor-sorba
fejtve:

εR̈0 = (l0 + εR0)ε
2φ̇0

2 + g − g − k

m
εR0 (3.6.20)

(l0 + εR0)εφ̈0 = −2ε2Ṙ0φ̇0 − gεφ0 (3.6.21)
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Ki tudjuk kukázni az ϵ-ban elsőrenden túlmenő tagokat:

εR̈0 ≈ − k

m
εR0 (3.6.22)

(l0)εφ̈0 ≈ −gεφ0 (3.6.23)

Tehát

R̈0 ≈ − k

m
R0 (3.6.24)

φ̈0 ≈ − g

l0
φ0 (3.6.25)

első rendben a megoldásaink szeparálódnak két független harmonikus oszcillátorra: az egyik frekven-
ciája a szokásos rugóé, a másiké pedig az ingáé.

Ha rögtön a Lagrange-ban közelítenénk, akkor az már bonyolultabb egy csatolt rendszer esetén.
A potenciális energiában ugyanúgy lehet másodrendben közelíteni:

Vgrav. = mg(l0 +R)(1− cosφ) ≈ mg(l0 +R)

(
1− 1 +

φ2

2

)
(3.6.26)

≈ 1

2
mgl0φ

2 (3.6.27)

A kinetikus tagban figyelnünk kell, hogy összességében a koordináták és a sebességek rendje is
egyezzen ezzel. Van például az a tagunk, hogy

1

2
m(l0 +R)2φ̇2 (3.6.28)

ami összességében másodrendű kell, hogy legyen. Mivel φ̇2 rendjét nem tudjuk csökkenteni, ezért a
másik tag csak nulladik rendig számít. Ergo 1

2ml20φ̇
2 lesz. Az összesített közelítő Lagrange-unk tehát

L ≈ 1

2
mṘ2 +

1

2
ml0φ̇

2 − 1

2
mgl0φ

2 − 1

2
kR2 (3.6.29)

nem más, mint két egymással nem kommunikáló oszcillátor, ahogy fentebb is beláttuk.

Kis megjegyzés a beadandóhoz és a további feladatokhoz: ha például egy olyan kinetikus tagunk
van, hogy

K ∝
(
ẋ1 cosx1 + ẋ2 sinx2 + ẋ1

ln (x2)

x2

)2

akkor is figyelni kell a sorfejtés rendjére. Itt például ha minden koordinátának a függvényét elsőrendig
fejtjük (nulla körül cosx ≈ 1, sinx ≈ x, ln (1 + x) ≈ x) akkor

K ≈ (ẋ1 + ẋ2x2 + ẋ1)
2

és látszik, hogy egyetlen olyan tagunk lesz csak, ami összességében másodrendű:

K ≈ 4ẋ1
2 +O(x3)
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3.7. példa: Éken csúszó inga

Múlt héten említettem, hogy a Lagrange-i mechanika feladatok olyanok mint a LEGO: csak össze
kell rakni az őket felépítő blokkokat, aztán szisztematikusan megy a megoldás. Most nézzük meg
ezt pár eddigi példa darabjaiból. Vegyünk egy asztalhoz rögzített háromszög alakú éket, amire
rakjunk egy M tömegű téglatestet, ami rajta szabadon, súrlódásmentesen mozoghat. Rakjunk erre a
téglatestre egy l hosszúságú ingát, egy m tömegű testtel a végén. Mi lesz az inga mozgásegyenlete?

6. ábra. Éken csúszó testhez rögzített inga.

Keressük meg a jó változókat! Ezek tipikusan olyanok, amik automatikusan teljesítik a kénysze-
reket a Lagrange-ban: például azt, hogy a téglatest az éllel párhuzamosan mozog. Legyen ennek
a koordinátája z. Az inga pedig adja magát egy φ szöghöz, amit a felfüggesztésétől nézünk. A
kinetikus energia ekkor:

K =
1

2
Mż2 +

1

2
ml2φ̇2 +Km,k (3.7.1)

Ahol Km,k az ingán lógó test kinetikus tagja a lecsúszásból adódóan. Mielőtt őt kiszámítjuk, nézzük
meg a potenciális energiát. Az sajnos már nem illeszkedik olyan szépen a koordinátákhoz: a két test
magassága kell hozzá. Ez a téglatestre

y

z
= sinβ tehát y = z sinβ (3.7.2)

Az ingán lógó test pedig még ez alatt fog lógni, hozzá képest egy extra l cosφ távolságot. Ezzel a
potenciális energia

V = −Mgz sinβ −mg (z sinβ + l cosφ) (3.7.3)

A hiányzó kinetikus tagunkhoz fel tudjuk használni az itt kifejezett ym távolságot, és a hasonló
x irányú eltérülését is az ingának:

xm = z cosβ + l sinφ (3.7.4)
˙xm = ż cosβ + lφ̇ cosφ (3.7.5)

Hasonlóképpen az ym tagra:
˙ym = −ż sinβ + lφ̇ sinφ (3.7.6)

A kettő négyzetösszege pedig:

˙xm
2 + ˙ym

2 = ż2 + l2φ̇2 + 2lφ̇ż(cosβ cosφ− sinβ sinφ) (3.7.7)
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Ahol megtaláljuk a már betippelt tagokat, illetve azt ami hiányzott:

Km,k = 2lφ̇ż(cosβ cosφ− sinβ sinφ) = 2lφ̇ż cos (φ+ β) (3.7.8)

Ezzel együtt tehát a teljes Lagrange:

L =
1

2
Mż2 +

1

2
ml2φ̇2 +mlφ̇ż cos (φ+ β) +Mgz sinβ +mg (z sinβ + l cosφ) (3.7.9)

A mozgásegyenletek pedig, a téglatesttel kezdve:

∂L
∂z

= (M +m)g sinβ
∂L
∂ż

= Mż +mlφ̇ cos (φ+ β) (3.7.10)

(M +m)g sinβ = Mz̈ +mlφ̈ cos (φ+ β)−mlφ̇2 sin (φ+ β) (3.7.11)

Az ingára pedig:

∂L
∂φ

= −mlφ̇ż sin (φ+ β)−mgl sinφ
∂L
∂φ̇

= ml2φ̇+mlż cos (φ+ β) (3.7.12)

−mlφ̇ż sin (φ+ β)−mgl sinφ = ml2φ̈+mlz̈ cos (φ+ β)−mlżφ̇ sin (φ+ β) (3.7.13)

−mgl sinφ = ml2φ̈+mlz̈ cos (φ+ β) (3.7.14)
lφ̈ = −g sinφ− z̈ cos (φ+ β) (3.7.15)

Mit kapunk akkor, ha mind φ mind β kicsit? Ekkor

(M +m)gβ = Mz̈ +mlφ̈ (3.7.16)
lφ̈ = −gφ− z̈ (3.7.17)

kis rendezéssel

(M +m)gβ = −Mlφ̈−Mgφ+mlφ̈ (3.7.18)
(m−M)lφ̈ = (M +m)gβ +Mgφ (3.7.19)

Csináljunk egy kis változócserét! Legyen

u = φ+
M +m

M
β (3.7.20)

ezt megszorozva Mg-vel:
Mgu = Mgφ+ g(M +m)β (3.7.21)

ami pont az egyenletünk jobb oldala. A változót deriválva pedig azt tapasztaljuk, hogy ü = φ̈ tehát
azt az egyenletet is megoldhatnánk, hogy

(m−M)lü = Mgu (3.7.22)

ü = − M

M −m

g

l
u (3.7.23)

Ez nem más, mint egy harmonikus oszcillátor (megint). Kis szöges közelítésben tehát az inga
harmonikusan rezeg, csak egy picit eltolva: függőleges helyett attól M+m

M β szöggel eltolva.
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