3. Ora

Ciklikus koordinatak

A mai 6ran tovabbi megmarad6é mennyiségekkel foglalkozunk: ezeknek elsé példaja a ciklikus
koordinatakra vezethet§ vissza. Veliik mar taldlkoztunk, csak nem nevesitettiik dket. Ha a
Lagrange alakja

Lz, y,&,9) = L(x,2,9) = K(r,&,9) = V(z)

tehat az egyik koordinatit nem tartalmazza expliciten, akkor az a koordinata ciklikus. Ekkor a ra
vonatkoz6 Euler-Lagrange egyenlet alapjan

doL oL

dtoy oy
a hozza tartozo6 p, = 0y L altal definialt altalanos lendiilet idGderivaltja nulla: § egy megmarado,
lendiilet-szerti mennyiség.

3.1. példa: Csuisz6 ék - Tomegkozéppont

Térjink vissza ismét a csiszkaldé alakzatokhoz, és hasznéljuk ezt a példat egy altalanos triikk
megismerésére. Ha nincsenek kiils§ erék akkor a tomegkozéppont gyorsulédsa nulla. Ebben a
példaban csak y iranyban hat kiils§ eré (a gravitacio): jo otlet lehet ezért az x irdnyban megnézni
egy tomegkozéppont-szerd mennyiséget.

1. abra. Csuszo ék abraja.

Legyenek az 1 és xg helyett az 1 koordinataink (emlékezve hogy a két = koordinatat ellenkezs

elgjellel vettiik fel)

M _
R:H & r=mz 42 (3.1.1)

Térjink at ezekre a koordinatékra, és vegyiik figyelembe veliikk a kényszereket. Visszaidézve a
kényszermentes Lagrange-ot:

1 1 1 1
L= §M33'12 + §My'12 + 57711"22 + §my'22 + mgys (3.1.2)
A kényszereink most y; = konst. és y2 = rtan ¢ tehat a potencial egyszertien

V = —mgrtanp (3.1.3)

ami mar csak az egyik koordinéatatol fiigg.



A kinetikus tagban viszont torténhetnek még cstinyasagok. Kovetkezd lépésként invertalnunk
kell az 4j koordinataink definiciojat a régikre. Ez favigd modszerrel

M M
1 =7 — T3 To = —T] — +mR (3.1.4)
m m
M
To=T—1T1 T = %ﬂ?g-l— ]\—;mR (3.1.5)
egyenletrendszerre vezet, amik kicsit alakitva
m M+m M M+m
T = M(T—xz)-i- i R 1‘2:E(7“_331)_ m R (3.1.6)
+R M g (3.1.7)
€r1 = r To = T — A
YT Mtm T M+m

Egy fokkal haladébb 0t az, ha ezt méatrixosan irjuk:

(0)-(F )

A fenti matrixot invertalva (aminek részleteit késébb gyakoroljuk)

1 _m_
@)= ) 0) 319
582 —1 m T
ugyanezt az eredményt kapjuk.

Minden esetre ezzel ki tudjuk fejezni a kinetikus tagunk x komponenseit. Némi algebra utéan

2 2
. M .
M@Mmm£:M<M+mwuﬁ-HnngJ—R> (3.1.10)
m2M . mM . mM? . mM .
= ————i*+ MR*+2 "R 2+ mR? -2 "R
Mrrme T TR T G m T M+m
(3.1.11)
mM ., mM -9
=-m—- M— M R 3.1.12
"arrme M arempt T (3.1.12)
mM 52
= M 1.1
M+mr+( +m)R (3.1.13)
Bevezetve a u redukdlt témeget
mM
= 3.1.14
M= m ( )
A teljes Lagrange-fiiggvénytink
1 2 Lo 1o
L= i(M +m)R” + SHT + omr tan ¢ + mgr tan @ (3.1.15)

Ebben mar szépen latszik, hogy az R koordinata sehol sem szerepel explicite: tehéat a ra vonatkozo
Euler-Lagrange egyenlet alapjan

k=0 (3.1.16)
M.i"l - ml'"g =0 (3.1.17)
M2y — mas = konst. (3.1.18)



Tehat a tomegkozéppont mozgasanak x komponense az, ami itt egy ciklikus koordinata. A hozza
tartozé lendiilet nem méas, mint az x irdnya Osszlendiilet: ez egy megmaradé mennyiség. Mellesleg a
masik, relativ koordinatéra vonatkoz6 Euler-Lagrange eredménye

(1 + mtan® )it = mgtan g (3.1.19)

visszaadja a mult 6ran latott mozgisegyenletet. Eszerint a két test allando

t
e Ti@?;ln‘g(p (3.1.20)

gyorsulassal tavolodik egymastol az x iranyban. A mult heti eredményeinket Gsszeadva pontosan ezt
a gyorsulast kapjuk, jopar algebrai 1épés utan amit most megspoérolunk azzal, hogy elhissziik.
3.2. példa: Mozgas hengeren

Bar kétségteleniil 6k a leggyakoribbak, nem csak Descartes-i és gémbi koordindtak léteznek. Nézziink
most egy példat, ahol hengeres (p, ¢, z) koordinatazas lesz célravezets. Vegylink egy R sugari,
végtelenill magas hengert. Erre rogzitiink egy tOomegpontot tugy, hogy csak a henger feliiletén
mozoghat; majd bekapcsolunk egy erdt, ami az origd felé vonzza a témegpontot, méghozza

F=—ki (3.2.1)

alakban. Mi lesz a pdlya, ha elinditjuk a tomegpontot?

2. abra. Henger feliiletére korlatolt pont koordinatazasa.

El6szor is: kellenek az energiak. A potencial helyett itt most az er6 van megadva, de ha még
emléksziink, hogy

F=-VU (3.2.2)
akkor visszakovetkeztethetiink ra, mint
1 1
U= isza = 5‘“”2 (3.2.3)



Itt r a tavolsag az origdotél: 6 még nem hengeres. Kis Pitagorasz tétellel viszont
r? =22+ p? (3.2.4)
tehat a potencialis tag hengerkoordinétakban:
U= %k(z2 + %) (3.2.5)
Ahova még beirhatjuk a p = R kényszeriinket:
U= %k(z2 + R?) (3.2.6)

Kérdés még a kinetikus tag: milyen irdnyokban lehet sebessége a részecskének? A harom hengeres
irany koziil csak p nem jatszhat, mert a feliiletre vagyunk korlatozva, igy marad z és ¢. Hogy az
utébbibol sebességet csinaljunk, meg kell javitani a dimenzidjat egy hossz mértékegységi sugar
szorzoval, ami itt p = R.

1 1
K= imz2 + 5mRng2 (3.2.7)
A teljes Lagrange tehéat:
1 1 1
L= 5m2':2 + 5mR%2 - §1<:(z2 + R?) (3.2.8)

Ami két valtozotodl fligg: 2z és ¢. Mostmar felfegyverkezve viszont a ciklikus koordinatak ismeretével,
rogton lathatjuk, hogy nincs explicit ¢ fiiggés benne, tehét

9 _y (3.2.9)
O
amibdl kovetkezik, hogy
gg = mR%p = konst. (3.2.10)

Ez egy megmarad6é mennyiség, mint az el6z6 példdban az impulzus volt. Ahogy itt most ¢
egy dltaldnos koordinata, a hozza tartozé mR2?¢ mennyiség egy dltaldnos impulzus. Mivel ez a
koordinata ciklikus (nincs explicit a Lagrange-ban), a hozza tartozo altalanos impulzus megmarad.
Kis atalakitassal egyébként

ﬁQPZR'mRQb:R'va:R'pL:L (3.2.11)

ez nem méas mint a perdiilet.

Minden esetre, mar az Euler-Lagrange felirdsa nélkiil tudunk valamit a palyarél: a korkoros
komponense a mozgasnak csupan egy alland6 sebességii keringés lesz. Marad még a z komponens,
amire mar kell az Euler-Lagrange:

oL oL

mz = —kz (3.2.13)
PR S (3.2.14)
m

Ez szintén egy ismerds diffegyenlet lehet: a harmonikus oszcillatoré. Megoldasa:
z(t) = Acos (wt + ¢) (3.2.15)

Osszesitve a talaltakat: a részecskénk korkorosen egyenletes sebességgel fog keringeni, mig a z
irdnyban fel-le oszcillal.



Noether-tétel

Megbaratkoztunk kicsit az altalanos impulzusokkal. Ezeket gyakran tudtuk 6sszekotni egy vizualis
megfigyeléssel a problémankrol: az x tengelyen eltolhat6 rendszereknél mindig megmarad az x irdnya
lendiilet, a forgasszimmetrikus feladatokban pedig a perdiilet. Ezt a megfigyelést formalizalja, és
altalanositja a Noether-tétel:

A Lagrange-fligguény minden szimmetridjdhoz tartozik eqy megmaradd mennyiség.
Matematikailag ez azt jelenti, hogy a g valtozoinkat eltranszformaljuk valahogy (pl. elforgatjuk)
(—T()~q+eg

ami sorbafejthets az identitas transzformécio (ie.: nem csindlunk semmit, ¢ — ¢) koriil. Ha erre a
transzforméciora véltozatlan a Lagrange fliggvénytink, akkor

0L 0L
= 8.%—]990

oq — UG

alland6. Nézziink erre par példat!

3.3. példa: 2D rugb
3.3.1. Descartes

Vegyiink egy egyszerii rugos testet egy sikban, és irjuk fel a Lagrange-at sima Descartes-i koordina-
takban. Ahogy az el6bb lathattuk, a rugd potencialis energiaja %kf' 2 tehat

1 1
L= im(ac2 +9?) — 5]{3(1‘2 +9?) (3.3.1)
Nézziik meg az

T—>T+ey Y=y —€x (3.3.2)

transzforméaciot, tehat ha @ = (y, —x)! Ez mellesleg tugy is irhat6, mint

G = )0 aa

Ezt nézegetve kicsit, felismerhetjiik hogy sin e = € és cos € & 1, tehat 6 nem més mint egy forgdsmétrix
kozelitése.

Nézziik meg, hogy invarians-e erre a transzformaciéra a Lagrange, kezdve a kinetikus taggal.
Véve a derivéltakat:

d d
T— —(r+ey)=2+ey y— —(y—€x)=9—et (3.3.4)
dt dt
amik négyzetei:
i? — &2 + 2eiy + €297 i = g — 2eiy + €232 (3.3.5)
0
~0 ~

Tehét a kinetikus tag:
1
K — —m(i® 4 9° + 2eiy — 2eiy) = K (3.3.6)
2 N———
=0



valtozatlan. Ugyanezt eljatszva a potencialis taggal:

1
V — Zk(z? +y? + + 2exy — 2exy) =V (3.3.7)
2 SN——r
=0
az is ugyanigy néz ki, tehat ez egy szimmetria.

Ha maér tujduk, hogy szimmetriarél beszéliink, nézziik meg mi marad meg a Noether-tétel szerint.
Derivalva a Lagrange-ot a sebességek szerint megkapjuk az altalanos lendiileteket:

oL . oL .
P = 5o =mid Py = 9 =my (3.3.8)
amiket be kell szorozni még az infinitezimalis ¢ tagokkal:
oL oL
P=_— — 3.3.9
=mz -y — myx (3.3.10)
= D2y — PyT (3.3.11)

Ami nem mas, mint a rendszer perdiilete.

3.3.2. Polar

Irjuk most fel ugyanezt, csak polarkoordinatakban, a rugd végébdl a testhez mutatod ¥ szoggel és a
rugb relativ megnyulasat leiré R tavolsdggal. Ekkor a Lagrange

L= %m(RQ + R*9?) — %kRQ (3.3.12)
Lathatjuk, hogy ¥ ciklikus, tehat az altalanos py lendiilet megmarad, amir6l mar belattuk korabban,
hogy a perdiilet. Ez konzisztens az el6z6 feladatrésszel, de gyakorlédsképp nézziik meg mi lesz most
az eltolas amire invaridns a Lagrange. A valdsidgban Gigyis ez a nehezebb része a feladatoknak.

A valtozok transzformaéalasa nem fiigg azok derivaltjaitol, ezért altalaban elGszor a potencialis
energiat érdemes nézegetni. Itt most ez teljesen fiiggetlen ¥-t6l, tehat ott tetszdleges

g = <2> azaz R— R+0, ¥ =9+ ea (3.3.13)

transzforméaciok mikodnek. A kinetikus tagunkban viszont szerepel 0 hogy az valtozatlan maradjon,
igaznak kell lennie

R? + R?9? = R? + R* (Y + ei)? (3.3.14)
Osszefiiggésnek. Ezt kicsit kibontva:
R? + R%9* = R? + R*(9° + 269q) (3.3.15)
i =0 (3.3.16)
a=0 (3.3.17)

azt latjuk, hogy a szog transzformacidja nem mas, mint egy konstans eltolds. A hozza tartozd
megmaradd mennyiség pedig: _
P=mR* -« (3.3.18)

ismét a perdiilet, egy konstans « szorzé erejéig. Ezt bele lehet olvasztani az e-ba, és vehet6 egynek.



3.4. példa: Hengerben henger

Vegyiink egy M tomegti, R sugari iires hengert. Rakjunk bele egy masik, m tomegd r sugari
hengert. A nagyot kezdjiik el megforgatni valamilyen 8 sebességgel, a kicsit pedig hagyjuk cstaszni:
mi lesz ekkor a Lagrange, mik a szimmetriai és a megmarad6é mennyiségei?

M R

3. abra. Forg6 hengerbben gurulé henger.

Nézziik meg el6szor a feladat nehezét: a paraméterezést. Hol van a kis henger kézéppontja
tetszdleges id6pontban? Ehhez két dolgot kell tudnunk: a cstszasmentes mozgas feltételét, és egy
kis geometriat. Utébbihoz segit a 4. abra.

4. dbra. Paraméterezést segit§ abra a hengerekrdl.

Ha csiszas nélkil torténne a mozgés, akkor az érintkzési pontokban megegyeznének a kertleti
sebességek, tehat

rag = Rﬁ.o (3'4'1)

Es mivel nem lenne cstiszas, a kis henger kozéppontja ott is maradna, ahol volt. Ha ez a feltétel
viszont nem teljesiil, akkor el fog mozdulni a kor koriil, valamilyen r& — RS sebességgel. Ez alatt
megtesz a kis henger kozéppontja valamennyi Al utat a nagy kozéppontja koriil, méghozza

Al=ra—Rf (3.4.2)



Tehat kis geometriaval tetszdleges (o, 5) valtozoknal a kis henger kozéppontjahoz kell§ szog:

ra— RS
Y= —— 3.4.3
7 (3.4.3)
Ezzel a kis kor kozéppontjanak (2, ym) koordinatai:
. ra— Rp ra — Rf
Ty = (R — 7") S1n ﬂ Ym = (R — 7’) COS ﬂ (344)
Az utoébbival gyorsan fel is tudjuk irni a potenciélis energiat, mint
-R
V = —mg(R —r) cos ra— Bp (3.4.5)

R—r
A kis henger kinetikus energidjahoz nem elég tudni a kézéppontjat: a keriiletén 1évS pontok szép
gyorsan keringhetnek, széval nekik is lesz kinetikus energidjuk. Egy tetszéleges pontja a kis kornek:

T =Ty +rsina Y = Ym — rCos (3.4.6)
x:(R—r)sin%—l—rsina y:(R—r)cos%—rcosa (3.4.7)
Ezeket derivalva:
T = cos rcl;;fpbﬁ(rd—ﬁ’ﬁ.) + récosa Yy = —sin ?fm(rd—]%ﬁ') +rasina (3.4.8)
Amibél a kinetikus tagba sziikséges négyzetosszegiik:
& + 4% =r’¢® + (ra — RB)’ (3.4.9)
i + % = 2r26% + R%B% — 2rRaf (3.4.10)
Tehat a kis henger kinetikus tagja:
K, = mr?a® — mrRaf + %mRQBQ (3.4.11)
A nagy henger mar egyszertibb: az csak forog a tengelye koriil, igy
Ky = %MRQBQ (3.4.12)

Tehét a teljes Lagrange:
ra— Rf
R—r
Keressilink ebben valamilyen szimmetriat! Induljunk mi megint a potenciélis energiabél, azon
beliil is a cos tagbol. Kis alakitéssal:

ra— Rf3 a—E3
C08 ——— = C0S (7’ - ) (3.4.14)

<g> - @ e <;> (3.4.15)

alakt konstans transzforméaciot. Ezt nézegetve lathatjuk, hogy az a szbget, tehat a belsé hengert
elforgatjuk valamilyen e szoggel; mig a kiils6t a fe-al. Visszaidézve a cstiszdsmentes forgas feltételét,
azt ez pont teljesiti.

L= %MRQBQ + mr2a® — mrRaS + %mR2 + mg(R — 1) cos (3.4.13)

Ez alapjan tippeljiik be a:



Nézziik meg mi lesz a hozzé tartozé megmarad6é mennyiség is. Véve az altalanos lendiileteket:

Da = % = r2ma — mrRB (3.4.16)
P = zg = R>M 3 — mrRa (3.4.17)
Majd megszorozva az infinitezimélis trafokkal:
P = (r?mé& — mrRB) + (R*Mf — ero‘z)% (3.4.18)
= (r’md — mrRB + RrM B — mr?a) (3.4.19)
= (M —m)rRp (3.4.20)

lesz a megmarad6 mennyiségiink.

Kozelitések

Gyakran el6fordul, hogy a mozgasegyenletek amiket megkapunk nem oldhatok meg kézzel, vagy
legalabbis nem kénnyen. Ilyenkor nagyjabol harom lehetGség van:

e Numerikusan oldjuk meg Gket, példaul python-ban a scipy csomaggal.
o Megnézziik a rendszer egyensulyi pontjait, és azokrél probalunk meg valami okosat mondani.
o Addig kozelitiink, amig meg nem tudjuk oldani kézzel.

Most az utols6 ponttal fogunk foglalkozni. A kozelitéseknek els§ 1épése, hogy feltessziik egy valtozorol
hogy pici, példaul ¢ < 1. Ekkor ¢ Osszes fliggvényét ami megjelenik a problémankban Taylor-sorba
tudjuk fejteni a nulla koriil tetszéleges rendig, ami gyakran mér kezelhet&bb.

Emlékeztetsil tetszbleges f(z) fiiggvénynek az a pont koriili Taylor sora:

f(x) =~ f(a) + f'a) (x —a)+ f"(a) (z —a)? + O(2?)

1! 2!
példaul
. . cos0 —sin0 9 3
sinz ~ sin0 + T (x—0)+ 51 (x=0)"+-- =2+ 0(2°)
" 20140) .
2
1n(1+a:)2mln(l—i—O)Q—i-%(x—O)—i-"‘:296—1-(’)(2)

Ot hasznos gyakorolni, ha eddig lemaradt volna: az elemi fiiggvények sorfejtését konnyd megkeresni,
de az Osszetettekét mar gyakran manualisan kell kiszdmolnunk.
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3.5. példa: Inga

Bemelegitésként elGszor irjuk fel a sima inga problémajat Lagrange-osan, polarkoordinatakkal. A
kényszermentes Lagrange-fiiggvény két tagja, ha origonak a felfiiggesztési pontot vessziik:

1 1

K = §m5'c2 + gmgf (3.5.1)
V =mg(l—y) =—mgy+ Vi (3.5.2)
Ebbe jon majd a kényszeriink, miszerint 2 + 3% = 12. Attérve polarkoordinatakra
x =lsinp és y=1lcosy (3.5.3)
ez automatikusan teljesiil, és a Lagrange-unk alakja
1
L= §m12¢>2 + mglcos ¢ (3.5.4)
A sziikséges derivaltak
gfb: =ml%p és gi = —mglsin p (3.5.5)
illetve dor
— = =ml*} 3.5.6
dtop ¥ (3:5.6)
Amikbdél adodik a mozgasegyenlet:
p= —% sin ¢ (3.5.7)

ami mar ismerds lehet az el6zg orarol. Emlékeztetsiil ott bevezettik w = 4/g/l-et, aztan kis
szogekre kozelitettiink mint ¢ < 1, amelynek eredményeképp

¢~ —wlp (3.5.8)

egy harmonikus oszcillatort kapunk. Innen ered a kozelit§ eredmény az inga keringési idejére:

2
w g

Ez mind szép és jo, viszont a kozelitést méar a mozgasegyenlet utolsé alakjaban alkalmaztuk. Ez
a precizebb és biztosabb mod: mégis kivancsiak lehetiink, hogy lehet-e el6bb. A vélasz az, hogy igen,
ha 6vatosak vagyunk.

Kezdjiik rogton a Lagrange-al:

L= %leQbZ -1+ mgl-cosep (3.5.10)

Es kozelitsiink a potencialis energidban masodrendig:
L~ %lesz -1+ mgl - (1 - f) (3.5.11)
Két tagot kaptunk: az els6 egy konstans, ami nem befolyésolja a fizikat, ezért lehagyhato. A tobbi:
L= %leQbQ -1 - %mgl . p? (3.5.12)

Ebbdl kiszamolva a mozgasegyenletet, az eredmény
G~ —wp (3.5.13)

pont ugyanaz, amit az el6bb kaptunk.
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3.6. példa: Rugés inga

Cseréljiik le az el6z6 feladat ingdjanak madzagat egy rugéra: mi lesz ekkor a mozgdsegyenlet kis
kitérésekre?

5. dbra. Rugods inga rajza. Itt = helyett R-el fogom jel6lni a megnytlésat, az eredeti hosszat pedig
lp-al.

3.6.1. Altalanos megoldas
Ha belevessziik a rugot is:
Viugs = %kAF (3.6.1)
ahol Al fejezi ki, hogy mennyire nyilt meg a rugd az eredeti lp-hoz képest. Descartes-i koordinatékkal:
22+ 92 =12 = (Ip + Al)? (3.6.2)

Al=+z2+y2 -1 (3.6.3)

Hogy kivalasszuk a j6 koordinatékat, gondolkodjunk kicsit a feladaton. Két dolgunk van: ingank
és rugonk. Az inga lattuk milyen jol illeszkedik a polaros koordinatazashoz. A rugoéban pedig az
jelenik meg, hogy mennyit nytl meg sugarirainyban. Legyen a két valtozonk ¢, az inga kitérési szoge,
és R, az inga megnytléasa az eredeti [y hosszahoz képest. A régi valtozok nyelvén tehét:

> +y? =12 = (lp + R)? (3.6.4)
x=lsinp = (lp+ R)singp (3.6.5)
y=1Ilcosp = (lp + R) cosp (3.6.6)

Milyen sebességek jelennek meg a kinetikus tagban? Lesz egyrészt a sugariranyd sebesség, ami azt
mondja meg, hogy mennyire valtozik éppen R:

1 .
K, = 5mR? (3.6.7)

és lesz egy erre mer@leges komponens, ami az érint§ irdnyt sebesség lesz. Ez pedig a ¢ szogsebesség
szorozva az (lgp + R) sugarral, tehat

1
K,= 5m(zo + R)?p? (3.6.8)
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Ezeket 6sszeadva pont ugyanazt kapjuk, mint amit a biztosabb behelyettesitéses modszerrel kaptunk
volna.
A rugo6 potencialis energidja igy méar nagyon egyszert:

Viugs = %kRQ (3.6.9)
Cserébe a gravitacios potencialis energiank lesz picit csunyabb:
Verav. = mg(lo + R)(1 — cos ¢) (3.6.10)
Ezzel kész is a Lagrange-unk:
L= %mR2 + %m(lo + R)*¢* +mg(lo + R)(cosp — 1) — %kR2 (3.6.11)

és johetnek is az Euler-Lagrange egyenletek. Két valtozonk van, tehat ketts lesz:

oL

R m(lp + R)¢* + mgcosp — mg — kR Oh mR (3.6.12)
oL oL
90 = —mg(lp+ R)sin ¢ 9% =m(lp+ R)?p (3.6.13)
Amikkel elvégezve a derivalasokat:
k 3}
(lo + R)¢* + gcosp — g — %R =R (3.6.14)
—g(lp + R)sinp = 2(lp + R)Rp + (Ip + R)*p (3.6.15)
Kicsit még szépitve:
. k
R=(lp + R)$* + g(cosp — 1) — —R (3.6.16)
(lo+ R)p = —2R¢p — gsingp (3.6.17)

Ezt mar be lehet kiildeni a kedvenc numerikus megoldénknak, és meg is lesznek a palyak.

3.6.2. Kozelités

Arra vagyunk kivancsiak, hogy kis kitérésekre mi lesz a megoldas. Ez itt két dolgot jelent: a szdg is
kicsit tér ki az egyenstilyi helyzetébdl, és a rugd is. Tehat

pk1 és R <y (3.6.18)
Ha még nem megy magabiztosan a kozelités, akkor csinaljuk a kovetkezst: legyen
Y = €pp és R =c¢eRy (3.6.19)

ami dimenziésan korrekt. Ezt beirva a mozgasegyenleteinkbe, illetve a szogfiiggvényeket Taylor-sorba
fejtve:

elig = (lo + eRo)e” G0 +9 — 9 — —cRo (3.6.20)
(lp + eRp)epo = —2e2RoBo — gewo (3.6.21)
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Ki tudjuk kukézni az e-ban elsérenden tilmend tagokat:

. k
eRy =~ ——eRy (3.6.22)

m
(lo)ego = —gewpo (3.6.23)

Tehat

3} k

m
o ~ —%800 (3.6.25)

els6 rendben a megoldésaink szepardlédnak két fiiggetlen harmonikus oszcillatorra: az egyik frekven-
cidja a szokasos rugdé, a masiké pedig az ingaé.

Ha rogton a Lagrange-ban kozelitenénk, akkor az mar bonyolultabb egy csatolt rendszer esetén.
A potencialis energidban ugyantugy lehet masodrendben kozeliteni:

2
Verav. = mg(lo + R)(1 — cos ) = mg(lo + R) <1 -1+ g) (3.6.26)

~
~

mgloe® (3.6.27)

N =

A kinetikus tagban figyelniink kell, hogy Osszességében a koordinatak és a sebességek rendje is
egyezzen ezzel. Van példaul az a tagunk, hogy

1
5l + R)%¢? (3.6.28)

ami Osszességében masodrendd kell, hogy legyen. Mivel ¢? rendjét nem tudjuk csokkenteni, ezért a
mésik tag csak nulladik rendig szamit. Ergo %ml%ng lesz. Az Osszesitett kozelité Lagrange-unk tehéat

1 ., 1 1 1
L~ §mR2 + §ml0gb2 — 5mgzogﬁ — 51@32 (3.6.29)

nem més, mint két egymassal nem kommunikélé oszcillator, ahogy fentebb is belattuk.

Kis megjegyzés a beadandbhoz és a tovabbi feladatokhoz: ha példaul egy olyan kinetikus tagunk
van, hogy

In (@))2

K x <:L“'1 CcoST1 + Tasinxy + T
€2

akkor is figyelni kell a sorfejtés rendjére. Itt példaul ha minden koordinatanak a fiiggvényét els6rendig
fejtjiik (nulla koril cosz ~ 1, sinz ~ z, In (1 + z) ~ z) akkor

K=~ (l"l + Toxo + 1;1)2
és latszik, hogy egyetlen olyan tagunk lesz csak, ami Osszességében mésodrendd:

K ~ 42,% + O(23)
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3.7. példa: Eken cstiszo6 inga

Muiilt héten emlitettem, hogy a Lagrange-i mechanika feladatok olyanok mint a LEGO: csak Ossze
kell rakni az Gket felépité blokkokat, aztan szisztematikusan megy a megoldas. Most nézziik meg
ezt par eddigi példa darabjaibol. Vegyiink egy asztalhoz rogzitett haromszog alaku éket, amire
rakjunk egy M tomegii téglatestet, ami rajta szabadon, surlédasmentesen mozoghat. Rakjunk erre a
téglatestre egy [ hossziisagn ingat, egy m tomegi testtel a végén. Mi lesz az inga mozgdsegyenlete?

M

6. abra. Eken cstiszo testhez rogzitett inga.

Keressiik meg a jo valtozokat! Ezek tipikusan olyanok, amik automatikusan teljesitik a kénysze-
reket a Lagrange-ban: példaul azt, hogy a téglatest az éllel paArhuzamosan mozog. Legyen ennek
a koordinataja z. Az inga pedig adja magat egy ¢ szoghoz, amit a felfiiggesztésétdl néziink. A
kinetikus energia ekkor:

1 1
K= 5MzQ + §m12gb2 + Kok (3.7.1)

Ahol K, i, az ingan 16g6 test kinetikus tagja a lecstiszasbol adodéan. Miel6tt 6t kiszamitjuk, nézziik
meg a potenciélis energidt. Az sajnos mar nem illeszkedik olyan szépen a koordinatédkhoz: a két test
magassaga kell hozza. Ez a téglatestre

% =sinf tehat y = zsinf (3.7.2)

Az ingan 16g6 test pedig még ez alatt fog logni, hozza képest egy extra [ cos ¢ tavolsdgot. Ezzel a
potencialis energia
V =—Mgzsin B —mg (zsin 8 + lcos p) (3.7.3)

A hianyz6 kinetikus tagunkhoz fel tudjuk hasznalni az itt kifejezett v, tavolsagot, és a hasonlo
x irdnyu eltériilését is az inganak:

Ty = zC0s 5+ Ising (3.7.4)
Ty = 2cos 8+ lpcos e

Hasonléképpen az v, tagra:
Ym = —2sin 8 + lpsin (3.7.6)

A kett6 négyzetosszege pedig:

T2 + ym? = 22 4+ 12¢% 4 2lp3(cos B cos ¢ — sin B sin @) (3.7.7)
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Ahol megtalaljuk a mar betippelt tagokat, illetve azt ami hidnyzott:
Ko = 21z (cos B cos p — sin Ssin ) = 2lpz cos (¢ + ()

Fzzel egyiitt tehéat a teljes Lagrange:
1 1
L= §M22 + imZQQbQ +mlpzcos (¢ + )+ Mgzsin 8+ mg (zsin S + [ cos @)

A mozgasegyenletek pedig, a téglatesttel kezdve:

oL oL
5:(M+m)gsinﬁ gzMz—i-mlcpcos(go—i-B)

(M +m)gsin § = M3 + ml@cos (¢ + ) — mip?sin (¢ + )
Az ingara pedig:
oL = —mlpzsin (¢ + ) —mglsin g 8—£ = ml*p + mlzcos (¢ + B)
oy ¢
—mlpzsin (¢ + B) — mglsin g = mi?p + mlz cos (¢ + B) — mlzpsin (¢ + B)
—mglsin p = ml2p + mlz cos (¢ + B)
lp=—gsinp — Zcos (¢ + B)
Mit kapunk akkor, ha mind ¢ mind 3 kicsit? Ekkor

(M +m)gB = M2+ mlg
lp=—gp—2
kis rendezéssel
(M +m)gB =—-MIlgp — Mgy +mlp
(m — M)lg = (M +m)gB + Mgy
Csinaljunk egy kis valtozocserét! Legyen

M+m
M

u=p+ B

ezt megszorozva M g-vel:
Mgu = Mgp+ g(M +m)s

(3.7.8)

(3.7.9)

(3.7.10)

(3.7.11)

(3.7.12)

(3.7.13)
(3.7.14)
(3.7.15)

(3.7.16)
(3.7.17)

(3.7.18)
(3.7.19)

(3.7.20)

(3.7.21)

ami pont az egyenletiink jobb oldala. A valtozét derivalva pedig azt tapasztaljuk, hogy i = ¢ tehat

azt az egyenletet is megoldhatnank, hogy

(3.7.22)

(3.7.23)

Ez nem més, mint egy harmonikus oszcillator (megint). Kis szoges kozelitésben tehéat az inga

M+m

harmonikusan rezeg, csak egy picit eltolva: fliggdleges helyett attol =57 3 szoggel eltolva.
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