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4. óra

Kisrezgések, normálmódusok

Bár a mozgásegyenleteket könnyen fel tudjuk írni a Lagrange-i mechanika módszereivel, láthattuk,
hogy azokat megoldani már általánosan nem mindig lehet. Van viszont egy nevezetes rendszer amit
jól ismerünk és szeretünk: a harmonikus oszcillátor. Ha egy adott rendszert valamilyen közelítésben
(pl. kis szögek) át tudunk alakítani valami oszcillátor-szerűvé (rezgések) akkor vissza tudjuk vezetni
a problémát valami jól megoldhatóra.

Emlékeztetőül egy darab egy dimenziós harmonikus oszcillátor Lagrange-függvénye (valamilyen
általános q koordinátával):

L =
1

2
mq̇2 − 1

2
kq2

amit kicsit másképp is írhatunk:

L =
1

2
q̇mq̇ − 1

2
qkq

Ha több, akár egymással kölcsönható rugónk is van, akkor is ilyen alakú lesz a megoldás. Viszont
több koordináta esetén q helyett q vektoraink lesznek, a Lagrange viszont egy skalár mennyiség.
Ahhoz hogy skalárt kapjunk vektorokból, a tippelt alak a több rugós Lagrange-ra:

L =
1

2
q̇TM q̇ − 1

2
qTD q

tehát sorvektor, mátrix, oszlopvektor alakú tagjaink kell hogy legyenek.
Ennek az alaknak van egy nagy előnye: ismerősen néz ki, és az Euler-Lagrange egyenlet is teljesen

hasonló egy harmonikus oszcillátoréra:

d
dt

∂L
∂q̇

=
∂L
∂q

M q̈ = −D q

q̈ = −M−1D q

q̈ = −Aq

végeredményéül pedig ilyen alakú mozgásegyenletet kapunk. Ha itt nem vektorok lennének, akkor ez
egy szögfüggvény diffegyenlete lenne: mivel több dimenzióban vagyunk, jó ötlet az, ha a megoldást
szögfüggvények lineárkombinációjaként keressük, valamilyen

q =
∑
i

ciη
i cos (ωit+ δi)

alakban. Az állítás az, hogy ezek az η vektorok (amikből kikombinálható a tényleges megoldás)
sajátvektorai az A mátrixnak: őket hívjuk normálmódusoknak. A szögfüggvényekben megjelenő
ω frekvenciák pedig a hozzájuk tartozó sajátfrekvenciák.

Ez így még egész száraznak tűnhet: pár példa után megbarátkozunk vele. A lényeges lépések
minden esetre:

• Felírjuk mátrixosan a Lagrange függvényt (akár közelítésekkel).

• Kiszámoljuk az A = M−1D mátrixot (ez egy invertálás aztán egy mátrixszorzás).

• Megkeressük a sajátrendszerét, amiből adódnak a megoldásaink.
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4.1. példa: Csúszkáló inga

Vegyünk egy M tömegű testet, és rögzítsük egy sínre a gravitációval merőlegesen. Erre akasszunk
egy l hosszúságú ingát, rajta egy m tömeggel. Milyen mozgást végez a rendszer kis kitérések esetén?

1. ábra. Sínen csúszkáló testhez rögzített inga.

Nézzük meg ezt a példát két féle megoldáson keresztül. Minden esetre a kiindulási pont a
Lagrange-lesz, amit írjunk fel az egyensúlyi helyzettől vett eltérésekkel. Ez a példa egyszerű:
ránézésre akkor van egyensúlyban a rendszer, ha x = 0 és ϑ = 0: ezek már magukban jó általános
koordináták. Kiindulásul a Descartes-i Lagrange:

L =
1

2
Mẋ2 +

1

2
Mẏ2 +

1

2
m
(
˙xm

2 + ˙ym
2
)
−mgym (4.1.1)

Amire még ki kell róni a kényszereinket. Egyrészt a test a sínen mozog, tehát ẏ = konst., másrészt
pedig az inga hossza fix: ezt már láttuk, a polárkoordináták teljesítik automatikusan.

A kis tömegpont koordinátái

r⃗m = r⃗M +

(
l sinφ
−l cosφ

)
=

(
x
0

)
+

(
l sinφ
−l cosφ

)
(4.1.2)

tehát kis matekkal

L =
1

2
Mẋ2 +

1

2
m
(
ẋ2 + l2ϑ̇2 + 2lẋϑ̇ cosϑ

)
+mgl cosϑ (4.1.3)

Ebből a Lagrange-ból kell megmondanunk a mozgást. Először nézzünk meg egy speciálisabb utat
ami általában nem működik, de ennél a feladatnál egyszerűbb lesz miatta az életünk. Aztán a
megoldás tudatában váltsunk át a szisztematikus, mindig működő módszerekre.

4.1.1. Lendületmegmaradás

Vegyük észre, hogy x ciklikus: tehát px megmarad. Ezért

px =
∂L
∂ẋ

= Mẋ+mẋ+mlϑ̇ cosϑ = konst. (4.1.4)
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Hogyha csak a kis szögekre vagyunk kíváncsiak, akkor első rendben

ẋ(m+M) +mlϑ̇ = A′ (4.1.5)

ẋ = − ml

m+M
ϑ̇+A (4.1.6)

ˆ
ẋdt = −

ˆ
ml

m+M
ϑ̇dt+

ˆ
Adt (4.1.7)

x(t) = − ml

m+M
ϑ+At+B (4.1.8)

Ami marad még, az a másik változó Euler-Lagrange egyenlete:

∂L
∂ϑ

= −mlẋϑ̇ sinϑ−mgl sinϑ
∂L
∂ϑ̇

= ml2ϑ̇+mlẋ cosϑ (4.1.9)

ml2ϑ̈+mlẍ cosϑ−mlẋϑ̇ sinϑ = −mlẋϑ̇ sinϑ−mgl sinϑ (4.1.10)

Amire alkalmazzuk a is szöges közelítést, és egyszerűsítsünk. A közelítésben most első rendig megyünk
el, mert a nem-szögfüggvényeket tartalmazó ml2ϑ̈ tag elsőrendű a szögben: a többit is célszerű eddig
közelíteni.

ϑ̈+
1

l
ẍ = −g

l
ϑ (4.1.11)

Ebbe be tudjuk írni x(t)-t a lendületmegmaradásból kiszámított időfüggéssel:

ϑ̈− m

m+M
ϑ̈ = −g

l
ϑ (4.1.12)(

1− m

m+M

)
ϑ̈ = −g

l
ϑ (4.1.13)

ϑ̈ = −g

l

m+M

M
ϑ (4.1.14)

Ez egy ismerős differenciálegyenlet: a szögfüggvények második deriváltja pont egy negatív előjellel
arányos saját magukkal. Keressük tehát a megoldást

ϑ(t) = C cos (ωt+ δ) (4.1.15)

alakban. Ezt visszaírva
−Cω2 cos (ωt+ δ) = −g

l

m+M

M
ϑ (4.1.16)

tehát megoldja a tippelt függvényünk a mozgásegyenletet, ha

ω2 =
g

l

m+M

M
(4.1.17)

Összegezve, a megoldásunk a két változóra:

ϑ(t) = C cos (ωt+ δ) (4.1.18)

x(t) = −C
ml

m+M
cos (ωt+ δ) +At+B (4.1.19)

Ami azt mutatja, hogy az inga oszcillál, az őt tartó test mozgása pedig egy azonos frekvenciájú
oszcillációból és egy x irányú egyenletes mozgásból áll.
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4.1.2. Általános megoldás

A fenti megoldás működött, de kihasználta a lendület megmaradását: sajnos ezt nem mindig tudjuk
megtenni. Hogy a bonyolultabb feladatok megoldásához szükséges mátrixos írásmódot gyakoroljuk,
alkalmazzuk azt is erre a feladatra.

Először is, fel kell írnunk a Lagrange-ot mátrixosan az általános koordinátákkal,

L =
1

2
q̇Mq̇ − 1

2
qDq (4.1.20)

alakban. Na ez így még nem fog menni a mi Lagrangunkra, szóval közelítsünk most rögtön a
Lagrange-ban. Menjünk el a szögben másodfokig: így a deriválások után elsőfokú tagok lesznek a
mozgásegyenletben. Ebben a közelítésben cosϑ ≈ 1− ϑ2

2 , tehát

L =
1

2
Mẋ2 +

1

2
m
(
ẋ2 + l2ϑ̇2 + 2lẋϑ̇− lẋ ϑ̇ϑ2︸︷︷︸)+ mgl︸︷︷︸−1

2
mglϑ2 (4.1.21)

Itt két tagot is elhagyhatunk: az első aláhúzott már harmadfokú, a második pedig egy konstans. Ez
már felírható szépen, mint

L =
1

2

(
ẋ

ϑ̇

)(
M +m ml
ml ml2

)(
ẋ

ϑ̇

)
− 1

2

(
x
ϑ

)(
0 0
0 mgl

)(
x
ϑ

)
(4.1.22)

Elvégezve a mátrixos alakra a deriválgatást, az Euler-Lagrange

Mq̈ = −Dq (4.1.23)

q̈ = −M−1Dq (4.1.24)

Keressük a q megoldását valamilyen tippelt próbafüggvények lineáris kombinációjaként:

q =
∑
i

ciηi cos (ωit+ δi) (4.1.25)

Hogy megtaláljuk ezeket az η vektorokat és ω frekvenciákat, meg kell oldanunk az A = M−1D
mátrix sajátproblémáját. Először kell a tömegmátrix inverze, ami két dimenzióban egyszerűbb:

M−1 =
1

detM
adjM (4.1.26)

a determinánsból és a (mátrix értelemben vett) adjungált mátrixból tevődik össze. Tehát nekünk

M−1 =
1

m(m+M)l2 −m2l2

(
ml2 −ml
−ml M +m

)
(4.1.27)

M−1 =
1

Mml2

(
ml2 −ml
−ml M +m

)
(4.1.28)

Marad a mátrixszorzás, ami most relatíve gyorsan megvan:

A =
1

Mml2

(
0 −m2l2g
0 (M +m)mgl

)
=

(
0 −m

M g

0 M+m
M

g
l

)
(4.1.29)

Ennek a sajátértékeit jelöljük ω2-el. A rájuk vonatkozó sajátértékegyenlet pedig a spuros-determinánsos
képletből

−ω2

(
M +m

M

g

l
− ω2

)
= 0 (4.1.30)
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Ennek két megoldása van: egyrészt lehet ω0 = 0. Másrészt lehet

ω2 =
M +m

M

g

l
(4.1.31)

Nézzük meg a hozzájuk tartozó sajátvektorokat! Az első esetben(
0− 0 −m

M g

0 M+m
M

g
l − 0

)
η0 = 0 (4.1.32)

Ennek normált megoldása:

η0 =

(
1
0

)
(4.1.33)

Van tehát egy komponensünk, ami az x irányban ω0 = 0 frekvenciával oszcillál: ez nem egy rezgés,
tehát a módszertanunk nem alkalmas a tárgyalására. Egyébként ő az, ami egy egyenletes eltolásként
és sebességként jelenik meg a megoldásban.

A másik sajátértékre (
−M+m

M
g
l −m

M g
0 0

)
η = 0 (4.1.34)

amit megold

η =

(
− ml

m+M

1

)
(4.1.35)

Ez a szög irányában egy ω frekvenciás oszcilláció, ami az x irányra egy − ml
m+M faktorral terjed át. A

mozgásegyenletek megoldása tehát ebben a formalizmusban:(
x
ϑ

)
= C

(
− ml

m+M

1

)
cos (ωt+ δ) +B

(
1
0

)
cos (0t+ δ0) (4.1.36)

Ez szépen visszaadja a "rendes" megoldásunk oszcilláló részét: láthatjuk viszont, hogy az egyenes
mozgás kiesett.

4.2. példa: Rudas inga

Vegyünk egy l hosszúságú ingát, aminek a végére rögzítsünk egy M tömegpontot. Ezen a ponton
fűzzünk át az ingára merőlegesen egy sínt: erre pedig rakjunk egy m tömegű testet. Mik a
normálmódusok?

2. ábra. Rudas inga ábrája. A változók nekünk θ és x helyett φ és r
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Tippeljük meg ismét a jó általános koordinátákat: ha a tömegek egybeesnek, és az inga pont
lefelé mutat, egyensúlyban vagyunk. Legyenek az ettől való eltérés általános koordinátái φ és r. Az
M tömegpont Descartes-i koordinátái (a potenciál nullpontjához illeszkedve):(

xM
yM

)
=

(
l sinφ
−l cosφ

)
(4.2.1)

A kis tömegpont már bonyolultabb: ahhoz kell a rúd és a horizont közötti szög. Kis geometriával
belátható, hogy az is φ. Ezzel (

xm
ym

)
=

(
xM
yM

)
+

(
r cosφ
r sinφ

)
(4.2.2)

Deriválva: (
˙xM
˙yM

)
=

(
lφ̇ cosφ
lφ̇ sinφ

)
(4.2.3)(

˙xm
˙ym

)
=

(
lφ̇ cosφ− rφ̇ sinφ+ ṙ cosφ
lφ̇ sinφ− rφ̇ cosφ− ṙ sinφ

)
(4.2.4)

Emeljük ezeket négyzetre:
˙xM

2 + ˙yM
2 = l2φ̇2 (4.2.5)

˙xm
2 = ((lφ̇+ ṙ) cosφ− rφ̇ sinφ)2 ˙ym

2 = ((lφ̇− ṙ) sinφ− rφ̇ cosφ)2 (4.2.6)

˙xm
2 = (lφ̇+ ṙ)2 cos2 φ+ r2φ̇2 sin2 φ− 2(lφ̇+ ṙ)rφ̇ cosφ sinφ (4.2.7)

˙ym
2 = (lφ̇− ṙ)2 sin2 φ+ r2φ̇2 cos2 φ− 2(lφ̇− ṙ)rφ̇ cosφ sinφ (4.2.8)

Összeadva a komponenseket

˙xm
2 + ˙ym

2 = (lφ̇+ ṙ)2 cos2 φ+ (lφ̇− ṙ)2 sin2 φ+

+r2φ̇2 sin2 φ+ r2φ̇2 cos2 φ+

−2(lφ̇+ ṙ)rφ̇ cosφ sinφ− 2(lφ̇− ṙ)rφ̇ cosφ sinφ

(4.2.9)

˙xm
2 + ˙ym

2 = (l2φ̇2 + ṙ2 + 2lφ̇ṙ) cos2 φ+ (l2φ̇2 + ṙ2 − 2lφ̇ṙ) sin2 φ+

+r2φ̇2 − 4rlφ̇2 cosφ sinφ
(4.2.10)

˙xm
2 + ˙ym

2 = (l2φ̇2 + ṙ2) cos2 φ+ 2lφ̇ṙ cos2 φ+ (l2φ̇2 + ṙ2) sin2 φ− 2lφ̇ṙ sin2 φ+

+r2φ̇2 − 4rlφ̇2 cosφ sinφ
(4.2.11)

˙xm
2 + ˙ym

2 = 2lφ̇ṙ(cos2 φ− sin2 φ) + l2φ̇2 + ṙ2 + r2φ̇2 − 4rlφ̇2 cosφ sinφ (4.2.12)

˙xm
2 + ˙ym

2 = 2lφ̇ṙ(1− 2 sin2 φ) + l2φ̇2 + ṙ2 + r2φ̇2 − 4rlφ̇2 cosφ sinφ (4.2.13)

˙xm
2 + ˙ym

2 = 2lφ̇ṙ + l2φ̇2 + ṙ2 + r2φ̇2 − 4rlφ̇2 cosφ sinφ− 4lφ̇ṙ sin2 φ (4.2.14)

Amikkel a kinetikus tagok nagyjából készen is vannak. A potenciális:

V = −Mgl cosφ−mg(l cosφ− r sinφ) (4.2.15)

Ha rezgésekre vagyunk kíváncsiak, megint át kell írni az ebből kapott Lagrange-függvényt valamilyen
közelítésekkel. A kis szög itt is működik, egy pontig:

˙xm
2 + ˙ym

2 ≈ 2lφ̇ṙ + l2φ̇2 + ṙ2 + r2φ̇2 − 4lrφ̇2φ− 4lφ̇ṙφ2 (4.2.16)
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Viszont két változónk van: x-re is ki kell szabnunk valamit, ha benne is kicsik a rezgések. Praktikai
szempontból pedig az a célunk, hogy mátrixosan tudjuk felírni a kinetikus tagot, tehát a tagjainkban
csak ṙ és φ̇ szerepeljenek (szigorúan másodrendben), maguk a változók ne. Ezt a két problémát
egy csapásra tudjuk megoldani, ha feltesszük hogy r ≪ l tehát r

l ≪ 1. Ekkor megjelölve, hogy mi
hányadrendű a kis változókban:

˙xm
2 + ˙ym

2 ≈ 2l2 φ̇
ṙ

l︸︷︷︸
O(2)

+l2 φ̇2︸︷︷︸
O(2)

+l2
ṙ2

l2︸︷︷︸
O(2)

+l2
r2

l2
φ̇2︸ ︷︷ ︸

O(4)

−4l2
r

l
φ̇2φ︸ ︷︷ ︸
O(4)

−4l2 φ̇
ṙ

l
φ2︸ ︷︷ ︸

O(4)

(4.2.17)

láthatjuk, hogy csak az első három tag kell nekünk: egyrészt a többi már negyedrendű, másrészt
pont ők azok, amik felírhatók mátrixosan. A teljesség jegyében még nézzük meg a potenciált is:

V ≈ −Mgl︸︷︷︸
O(0)

+
Mgl

2
φ2︸︷︷︸
O(2)

−mgl︸︷︷︸
O(0)

+
mgl

2
φ2︸︷︷︸
O(2)

+mgl
r

l
φ︸︷︷︸

O(2)

(4.2.18)

Így a Lagrange

L =
1

2
q̇Mq̇ − 1

2
qDq (4.2.19)

ahol

M =

(
m ml
ml l2(M +m)

)
D =

(
0 mg
mg (m+M)lg

)
(4.2.20)

A normálmódusok megtalálásához ismét számítsuk ki az A = M−1D mátrixot! Ehhez

M−1 =
1

ml2(M +m)−m2l2

(
l2(M +m) −ml

−ml m

)
=

1

Ml

(
lM+m

m −1
−1 1

l

)
(4.2.21)

Amivel

A =
1

Ml

(
lM+m

m −1
−1 1

l

)
mg

(
0 1

1 m+M
m l

)
=

m

M

g

l

(
−1 0
1
l

M
m

)
(4.2.22)

Amiből a sajátértékek egyenlete:

ω4 − g

l

(
M −m

M

)
ω2 − m

M

(g
l

)2
= 0 (4.2.23)

Most rábízva a szimbolikus programokra a megoldást, azok

ω2
1 =

g

l
ω2
2 = −m

M

g

l
(4.2.24)

A normálmódusok pedig (normálás nélkül):

η1 =

(
0
1

)
η2 =

(
−lm+M

m
1

)
(4.2.25)



8

Gerjesztések

A harmonikus mozgásokkal már jól megbarátkoztunk. Ezeknek eggyel bonyolultabb esete, ha vesszük
az eddigi rezgő rendszerünket, és rákapcsolunk valami külső erőt. Arra vagyunk kíváncsiak, hogy
mi lesz ekkor a mozgás, feltéve, hogy a külső erő nélküli rendszert már ismerjük. Egy matekos
ismétlésként nézzük a következő differenciálegyenletet:

(∂2
t + ω2

0)x(t) = f(t)

és gyorsan vegyük át a lépéseket a megoldásához.
Először is: ez bonyolult. Oldjuk meg először x helyett valami G függvényre abban az eseten, ha

a jobb oldalt szereplő erő csak egy Dirac-delta.

(∂2
t + ω2

0)G(t) = δ(t)

Ő azért jó nekünk, mert az ismeretében tetszőleges f(t) erőre meg tudjuk mondani a megoldást:

x(t) =

ˆ ∞

−∞
G(t− t′)f(t′)dt′

Ezt ha behelyettesítjük az eredeti egyenletbe, akkor láthatjuk, hogy megoldja azt. Minden esetre
még csak alrébbtoltuk a problémát: most x helyett a G Green-függvényt kell megtalálnunk. Ez
kinézhető táblázatokból, például a harmonikus oszcillátor rendszerére:

G(t) = Θ(t)
sin (ω0t)

ω0

amivel tetszőleges gerjesztőerőre fel tudjuk írni a megoldást, a fenti integrállal.
Persze minket most a mátrixos jelölés érdekel. Ekkor a mozgásegyenletünk igazából

Mq̈ +Dq = F

Ezt kicsit alakítva
q̈ +M−1Dq = M−1F

Hasonlóan a fentihez, ennek általános megoldása helyett először nézzük a

(∂2
t +M−1D)Ĝ(t) = δ(t)

egyenletet. A sima oszcillátor megoldásából idézzük vissza, hogy megtaláltuk M−1D sajátrendszerét:
ezek voltak a normálmódusok, amikre

(M−1D)ηi = ω2
i ηi

A sajátvektorok diadikus szorzatát felhasználva pedig felírhatunk két fontos mátrixot velük:

I =
∑
i

ηiη̃i M−1D =
∑
i

ω2
i ηiη̃i

Ahol megjelenik η̃i, a sajátvektorhoz tartozó duális, amire η̃iηj = δij . Ha a sajátrendszer teljes
és ortogonális, őt vehetjük egyszerűen a vektor transzponáltjának. Minden esetre ezzel a lépéssel
rögzítettük a bázisunkat a sajátrendszerhez, amit tartsunk fejben. Ha visszaírunk mindent, és addig
hunyorítunk hogy ne lássunk vektorokat, akkor ez úgy néz ki mint a sima oszcillátor, tehát
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”Ĝ(t) ∝ −
∑
i

sin (ωit)

ωi
”

kinézetű megoldást keresünk, a vektoros-mátrixos részen kívül.
A mátrixos részhez emlékezzünk vissza, hogy a Green függvény

ˆ
Ĝ(t− t′)M−1F

alakban szerepel nekünk a megoldásban: hatni fog valamilyen vektorra. Ha mi eddig a sajátbázisban
dolgoztunk, akkor ezt az M−1F vektort is át kell rá transzformálni. Így a helyes mátrixos alakba
bekerül még az M−1F vektor átírása is erre a bázisra (meg persze egy Θ lépcsőfüggvény):

Ĝ(t) = G(t) = Θ(t)
∑
i

sin (ωit)

ωi
ηiη̃i

Kicsit nézegetve ez két dolgot csinál. Először is, hattatva a gerjesztő erőre, azt levetíti valamelyik
sajátmódus irányába. Ebben az irányban pontosan úgy hat, mint a sima oszcillátorra a gerjesztés.
Ezeket összegezve az összes módusra, megkapjuk a teljes hatását a forrástagnak. Mindez persze szép
bonyolultan hangzik, szóval nézzünk is rá pár példát!

4.3. példa: Szinuszos gerjesztés harmonikus oszcillátorra

Bemelegítésként nézzünk meg egy sima harmonikus oszcillátort, amire rákapcsolunk egy Ω frekvenci-
ájú, f0 amplitúdójú szinuszos gerjesztést a t = 0 pillanattól kezdve:

(∂2
t + ω2

0)x = f(t) (4.3.1)
f(t) = f0 sin (Ωt)Θ(t) (4.3.2)

Itt a gerjesztőerőben a Θ(t) lépcsőfüggvény a "t = 0 pillanattól kezdve" szófordulat átfogalmazása
matekra.

Tudjuk, hogy a Green függvény ismeretében a megoldás

x(t) =

ˆ ∞

−∞
G(t− t′)f(t′)dt′ (4.3.3)

és hogy a sima oszcillátorra

G(t) = Θ(t)
sinωt

ω
(4.3.4)

Mivel a forrásmentes rendszer egy sima harmonikus oszcillátor, amit ismerünk, nincs más dolgunk,
mint beírni ezeket az integrálba, ügyelve, hogy minek mi az argumentuma:

x(t) =

ˆ ∞

−∞
Θ(t− t′)

sinω(t− t′)

ω
f0 sin (Ωt

′)Θ(t′)dt′ (4.3.5)

Nézzük meg mit csinálnak ezek a lépcsőfüggvények. A Θ(t′) annyit tud, hogy t′ = 0 alatt nulla,
felette pedig egy. Ezzel be van szorozva az integrandus: tehát annyit tesz, mintha −∞ helyett 0-tól
integrálnánk. A másik, Θ(t− t′) akkor lesz nulla, ha t− t′ < 0, tehát ha t′ > t. Ez egy felső korlátot
ad az integrálunknak t-nél. Ezeket beírva, illetve kiemelve mindent ami konstans:

x(t) =
f0
ω

ˆ t

0
sin [ω(t− t′)] sin (Ωt′)dt′ (4.3.6)
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Nézzük meg hogyan kell elvégezni egy ilyen integrált kézzel, papíron. Először is, trigonometriából
tudjuk, hogy

cos(x+ y) = cosx cos y − sinx sin y (4.3.7)
cos(x− y) = cosx cos y + sinx sin y (4.3.8)

Az alsóból kivonva a fölsőt:

cos(x− y)− cos(x+ y) = 2 sinx sin y (4.3.9)

Tehát nekünk:

sin [ω(t− t′)] sin (Ωt′) =
cos [ω(t− t′)− Ωt′]− cos [ω(t− t′) + Ωt′]

2
(4.3.10)

Amivel az integrálunk két rész összegéből fog állni:

1

2

ˆ t

0
cos [ω(t− t′)− Ωt′]dt′ − 1

2

ˆ t

0
cos [ω(t− t′) + Ωt′]dt′ (4.3.11)

Nézzük most csak az elsőt, és vezessünk be egy u változócserét:

u = ω(t− t′)− Ωt′ (4.3.12)
du
dt′

= −ω − Ω = −(Ω + ω) (4.3.13)

Tehát az integrál: ˆ t

0
cos [ω(t− t′)− Ωt′]dt′ = − 1

Ω + ω

ˆ
cosudu (4.3.14)

Amire kell még figyelnünk, azok a határok. Ezek rendre:

u(t′ = 0) = ωt u(t′ = t) = −Ωt (4.3.15)

ahol feltűnhet, hogy a fenti határ igazából lentebb van, mint a lenti. Ezeket felcserélhetjük, ami hoz
egy negatív szorzót az integrál elé, így:

− 1

Ω + ω

ˆ
cosudu =

1

Ω + ω

ˆ ωt

−Ωt
cosudu (4.3.16)

Ezt már egyszerű kiintegrálni:

1

Ω + ω

ˆ ωt

−Ωt
cosudu =

1

Ω + ω
[sinωt− sin (−Ωt)] (4.3.17)

=
1

Ω + ω
[sinωt+ sinΩt] (4.3.18)

A másik integrálunk is hasonló lesz, annyi különbséggel, hogy ott

w = ω(t− t′) + Ωt′ (4.3.19)
dw
dt′

= −ω +Ω = Ω− ω (4.3.20)
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illetve

w(t′ = 0) = ωt w(t′ = t) = Ωt (4.3.21)

Tehát ez az integrál:
ˆ t

0
cos [ω(t− t′) + Ωt′]dt′ =

1

Ω− ω

ˆ Ωt

ωt
coswdw (4.3.22)

=
1

Ω− ω
[sinΩt− sinωt] (4.3.23)

Véve a kettő különbségét, közös nevezőre tudunk hozni:

1

Ω + ω
[sinωt+ sinΩt]− 1

Ω− ω
[sinΩt− sinωt] = (4.3.24)

=
(Ω− ω) sinωt+ (Ω− ω) sinΩt− (Ω + ω) sinΩt+ (Ω + ω) sinωt

(Ω + ω)(Ω− ω)
(4.3.25)

=
2Ω sinωt− 2ω sinΩt

Ω2 − ω2
(4.3.26)

Visszaírva minden elhagyott szorzó faktort, ezzel a megoldásunk:

x(t) =
f0
ω

Ωsinωt− ω sinΩt

Ω2 − ω2
(4.3.27)

Így megkaptuk egzakt formában a kitérés-idő függvényt. Vele már tudunk számolni bármit, ami
érdekelhet a mozgásról. Most például nézzük meg, hogy hol lesz a kitérés nulla, tehát

x(t0) = 0 (4.3.28)

Ehhez
f0
ω

Ωsinωt0 − ω sinΩt0
Ω2 − ω2

= 0 (4.3.29)

Ωsinωt0 − ω sinΩt0 = 0 (4.3.30)
Ωsinωt0 = ω sinΩt0 (4.3.31)
sinωt0
sinΩt0

=
ω

Ω
(4.3.32)

Vegyük azt a speciális esetet, ahol Ω = 2ω. Ekkor

sinωt0
sin (2ωt0)

=
1

2
(4.3.33)

Egy addíciós tétel után
sin 2x = 2 sinx cosx (4.3.34)

tehát
sinωt0

2 sinωt0 cosωt0
=

1

2
(4.3.35)

1

cosωt0
= 1 (4.3.36)

Ami teljesül, ha

ωt0 = 2kπ k ∈ Z (4.3.37)
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4.4. példa: Tripla rugós kéttest rendszer

Most nézzünk valami tényleges fizikai rendszert ami nem csak közelítve lesz oszcillátor: két különböző
m1, m2 tömegű golyót, amiket kössön össze egymással egy K állandójú rugó; illetve a hozzájuk
közelebbi falakkal 1-1 rendre k1 és k2 állandójú rugó.

3. ábra. Rugós rendszer vázlatos rajza.

Legyenek az általános koordinátáink az egyensúlyi helyzettől való eltérést leírő q1 és q2. Ekkor a
Lagrange:

L =
1

2
m1q̇1

2 +
1

2
m2q̇2

2 − 1

2
k1q

2
1 −

1

2
k2q

2
2 −

1

2
K(q2 − q1)

2 (4.4.1)

Ezt mátrixossá alakíthatjuk:

L =
1

2

(
q̇1
q̇2

)T (
m1 0
0 m2

)
︸ ︷︷ ︸

=M

(
q̇1
q̇2

)
− 1

2

(
q1
q2

)T (
k1 +K −K
−K k2 +K

)
︸ ︷︷ ︸

=D

(
q1
q2

)
(4.4.2)

Visszaidézve még a sima rugóknál használt ω2 = k
m frekvenciát, dimenziótlanítani is tudjuk a

mátrixokat, majd megoldani a sajátérték-problémát.

A =

(
1/m1 0
0 1/m2

)
︸ ︷︷ ︸

=M−1

(
k1 +K −K
−K k2 +K

)
=

(
k1+K
m1

− K
m1

− K
m2

k2+K
m2

)
(4.4.3)

Legyen ω2
1 = k1

m1
, ω2

2 = k2
m2

, α = K
k1

és β = K
k2

, amikkel

A =

(
w2
1(1 + α) −w2

1α
−ω2

2β w2
2(1 + β)

)
(4.4.4)

Végül, ha bevezetjük még γ =
ω2
2

ω2
1
-et:

A = w2
1

(
1 + α −α
−γβ γ(1 + β)

)
(4.4.5)

Az általános megoldáshoz ennek kellene megoldani a sajátérték-problémáját.

4.5. példa: Háromrugós rendszer gerjesztése

Nézzük meg az előző rendszert, csak kicsit leegyszerűsítve az elrendezést, hogy tükörszimmetrikus
legyen. Hattassuk erre egy erőt a következő alakban:

f(t) =
f0
τ
Θ(t)Θ(τ − t) (4.5.1)

Tehát egy konstans erő a t ∈ [0, τ ] időintervallumban, azon kívül pedig nulla. Diskutáljuk, hogy mi
történik annak függvényében, hogy melyik testre hatunk vele.
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4. ábra. Falas-rugós rendszer.

4.5.1. Sajátmódusok

Legyen most szimmetrikus a rendszer, tehát m1 = m2 és k1 = k2 ̸= K. Emlékeztetőül, ekkor a
mátrixaink:

M =

(
m 0
0 m

)
D =

(
k +K −K
−K k +K

)
(4.5.2)

amivel egyszerűen

A =
1

m
D (4.5.3)

A sajátértékekre ekkor: (
k +K

m
− ω2

)2

− K2

m2
= 0 (4.5.4)

Legyen a lustaság kedvéért ω2
0 = k/m és Ω2

0 = K/m, így(
Ω2
0 + ω2

0 − ω2
)2 − Ω4

0 = 0 (4.5.5)

ω4−2(Ω2
0 + ω2

0)ω
2 + (Ω2

0 + ω2
0)

2 − Ω4
0 = 0 (4.5.6)

ω2 =Ω2
0 + ω2

0 ±
√

(Ω2
0 + ω2

0)
2 − (Ω2

0 + ω2
0)

2 +Ω4
0 (4.5.7)

ω2
1 = ω2

0 ω2
2 = ω2

0 + 2Ω2
0 (4.5.8)

Az ezekhez tartozó sajátmódusok pedig, mivel

A =

(
ω2
0 +Ω2

0 −Ω2
0

−Ω2
0 ω2

0 +Ω2
0

)
(4.5.9)

innen kis matekkal

η1 =
1√
2

(
1
1

)
η2 =

1√
2

(
1
−1

)
(4.5.10)

Ezek ugyebár két harmonikus mozgást írnak le: az elsőnél a két test azonos irányba mozdul ki, a
másiknál pedig ellentétesbe. Ezekhez a módusokhoz kell illesztenünk a gerjesztésünket. Tehát a Green
függvényünk komponensei a sajátmódusok rendszerén, kihasználva, hogy most teljes ortonormált:(

1

Θ(t)
·
)
G(t) =

∑
i

sin (ωit)

ωi
ηη̃ =

sin (ω1t)

ω1
η1η1

T +
sin (ω2t)

ω2
η2η2

T (4.5.11)

Ha ezt hattatjuk a gerjesztő erőnkre, akkor az ηηT tagok gyakorlatilag egy projektorfelbontást fognak
rajta végezni: fel kell írnunk a forrástagunkat ezekkel a vektorokkal.
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4.5.2. Azonos lökés

Ha mindkét testet azonos erővel lökdössük, akkor ezen a bázison az erő:

M−1F =
F (t)

m
·
(
1
1

)
+ 0 ·

(
1
−1

)
F (t) =

f0
τ
Θ(t)Θ(τ − t) (4.5.12)

Tehát a koordináták időfejlődése:

q =

ˆ ∞

−∞
Θ(t′)Θ(τ − t′)Θ(t− t′)

f0
mτ

sin (ω1(t− t′))

ω1
·
(
1
1

)
dt′ (4.5.13)

Vegyük azt az esetet, ahol t > τ , és nézzük meg mi történik a lépcsőfüggvényekkel. A Θ(t′) a
lenti határt fogja megadni, hiszen −∞ és 0 közt nullával szoroz mindent. A másik kettő a felső
határt: az egyik t a másik τ felett szoroz mindent nullával. Mivel itt τ a kisebb, ő lesz a felső
határunk:

q =

ˆ τ

0

f0
mτ

sin (ω1(t− t′))

ω1
·
(
1
1

)
dt′ (4.5.14)

Az integrálás után:

q =
f0

mτω2
0

[cos (ω0(t− τ))− cos (ω0t)] ·
(
1
1

)
(4.5.15)

Nézzük meg mi történik, ha τ → 0. Ez annak felel meg, hogy a rendszer egy pillanatnyi lökést kap,
aztán szabadon fejlődik az időben. Egy kis átírással:

q =
f0

mω2
0

cos (ω0(t− τ))− cos (ω0t)

τ
·
(
1
1

)
(4.5.16)

ami ebben a határesetben nem más lesz, mint egy derivált régimódi képlete. Tehát:

q → f0
mω0

sinω0t ·
(
1
1

)
(4.5.17)

a kis löket után a rugók az első módusban rezegnek, azonos irányban. Ennek a frekvenciája ω0, az
amplitúdója pedig f0/mω0.

4.5.3. Baloldali lökés

Mi történik, ha csak az első rugóra hat külső gerjesztés? Ekkor az erő felbontása

F =
F

2
·
(
1
1

)
+

F

2
·
(

1
−1

)
(4.5.18)

Ezt kétféleképpen is megkaphatjuk: egyrészt ezt adja a didaktikus szorzatból készített két projektor.
Másrészt vegyük észre, hogy ha össze adjuk őket

F =
F

2
·
(
1
1

)
+

F

2
·
(

1
−1

)
=

F

2
·
(
2
0

)
(4.5.19)

akkor csak az első komponensben lesz rezgés, pont ahogyan azt a feladat kéri. Ha nem vagyunk
biztosak, akkor csináljuk meg a projektálást.
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Minden esetre most az integrálunkban két tag is lesz:

q =
f0

2mτ

ˆ τ

0

sin (ω1(t− t′))

ω1
·
(
1
1

)
+

sin (ω2(t− t′))

ω2
·
(

1
−1

)
dt′ (4.5.20)

Ezt kiszámítva

q =
f0

2mτω2
1

[cos (ω1(t− τ))− cos (ω1t)] ·
(
1
1

)
+

f0
2mτω2

2

[cos (ω2(t− τ))− cos (ω2t)] ·
(

1
−1

)
(4.5.21)

Itt szintén alkalmazzuk a τ → 0 határesetet:

q → f0
2mω1

sinω1t ·
(
1
1

)
+

f0
2mω2

sinω2t ·
(

1
−1

)
(4.5.22)

Ez a mozgás tehát két részből áll: azonos irányban feleakkora amplitúdójú rezgést végeznek a
rugók mint az első esetben; viszont megjelenik egy ellentétes irányú módus is, a hozzá tartozó ω2

frekvenciával.
Vegyük még ellenőrzésül radikális esetnek azt, amikor a középső rugón K = 0, mert ekkor

ω2
0 = ω2

0 + 2Ω2
0 (4.5.23)

ω1 = ω2 (4.5.24)

Beírva:

q → f0
2mω0

sinω0t ·
(
1
1

)
+

f0
2mω0

sinω0t ·
(

1
−1

)
(4.5.25)

ami kis rendezés után

q → f0
mω0

sinω0t ·
(
1
0

)
(4.5.26)

Aminek örülünk: az első test pontosan úgy mozog, mint a fenti gerjesztő erő esetén; a második pedig
nyugalomban marad. Ez logikus, mert K = 0 mellett nincs rugó ami összekötné a megmozgatott
testtel.

4.5.4. Ellentétes szinuszos gerjesztés

Nézzünk meg erre a rendszerre is egy szinuszos gerjesztést t = 0 kezdettel, ami ellentétesen hat a két
testre. Tehát a gerjesztő erőnk:

F (t) = Θ(t)f0 sin (Ωt)η2 (4.5.27)

Erre hattatva a tömegmátrix inverzét:

M−1 = Θ(t)
f0
m

sin (Ωt)η2 (4.5.28)

majd pedig a Green-függvényt, ami most ismét csak az egyik móduson hat:

q =

ˆ ∞

−∞
Θ(t− t′)

sin (ω2(t− t′))

ω2
Θ(t′)

f0
m

sin (Ωt′)η2dt′ (4.5.29)

A határok ismét a lépcsőfüggvényekből adódnak: az első miatt a fenti határ t, a második miatt a
lenti pedig 0. Tehát:

q =
f0

mω2

ˆ t

0
sin (ω2(t− t′)) sin (Ωt′)

(
1
−1

)
dt′ (4.5.30)

Ez az integrál ugyanaz, mint a sima oszcillátornál, szóval a kiszámítását most kihagyjuk. Eredménye:

q =
f0

mω2

Ωsinω2t− ω2 sinΩt

Ω2 − ω2
2

(
1
−1

)
(4.5.31)
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4.6. példa: Egyszerű molekula

Modellezzünk úgy egy kis molekulát, mint 3 test összekötve 2 rugóval. Legyenek a rugók és a
kinti tömegek azonosak. Mik lesznek ekkor a sajátmódusok, és hogyan hatnak a rendszerre a külső
gerjesztések?

5. ábra. Egy egyszerű molekula vázlatos rajza.

4.6.1. Normálmódusok

Felírva a Lagrange-ot, kis munkával kiderül, hogy itt a mátrixaink:

M =

m 0 0
0 M 0
0 0 m

 D =

 k −k 0
−k 2k −k
0 −k k

 (4.6.1)

Mivel M diagonális, könnyű invertálni: egyszerűen a tömegek reciprokai kellenek egy diagonális
mátrixba. A szorzást elvégezve:

A = ω2
0

 1 −1 0
−m

M 2m
M −m

M
0 −1 1

 (4.6.2)

ahol bevezettem megint k
m = ω2

0-et. Ebből a sajátértékre vonatkozó egyenlet:

(ω2
0 − ω2)2

(
2ω2

0

m

M
− ω2

)
− 2ω4

0

m

M
(ω2

0 − ω2) = 0 (4.6.3)

Ránézésre két megoldást is be tudunk tippelni. Legyen az első ω = ω0, ami általában egy jó tipp.
Az ehhez tartozó sajátvektor 1− 1 −1 0

−m
M 2m

M − 1 −m
M

0 −1 1− 1

 η0 = 0 (4.6.4)

alapján olyan lesz, hogy a második komponense nulla; az első és utolsó pedig egymás ellentettjei.
Szépen normálva:

η0 =
1√
2

 1
0
−1

 (4.6.5)

Amivel meg is van az első módus: ebben a középső atom mozdulatlan, a másik kettő pedig ki-be
rezeg körülötte.
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A második sajátérték is könnyen tippelhető: legyen ω1 = 0. Ez is teljesíti az egyenletet, és a
hozzá tartozó sajátvektor lehet például: 1 −1 0

−m
M 2m

M −m
M

0 −1 1

 η1 = 0 (4.6.6)

η1 =

1
1
1

 (4.6.7)

Ez egy nulla frekvenciás rezgés, ami minden koordinátára azonosan hat. Hasonlóan a csúszkáló
ingánál látotthoz, ez sem egy rezgés igazából: ez egy eltolás az x tengelyen, ami mindhárom atomra
ugyanúgy hat.

A harmadik sajátérték nehezebb: ehhez már egy picit számolni is kell. Tudjuk, hogy ez egyik
sajátérték ω2

0, szóval emeljünk ki a sajátérték egyenletéből (ω2
0 − ω2)-et:

(ω2
0 − ω2)2

(
2ω2

0

m

M
− ω2

)
− 2ω4

0

m

M
(ω2

0 − ω2) = 0 (4.6.8)

(ω2
0 − ω2)

[
(ω2

0 − ω2)
(
2ω2

0

m

M
− ω2

)
− 2ω4

0

m

M

]
= 0 (4.6.9)

ω4 − ω2ω2
0

(
1 + 2

m

M

)
+ 2ω4

0

m

M
− 2ω4

0

m

M
= 0 (4.6.10)

ω4 − ω2ω2
0

(
1 + 2

m

M

)
= 0 (4.6.11)

ω2
[
ω2 − ω2

0

(
1 + 2

m

M

)]
= 0 (4.6.12)

Tehát a harmadik megoldás ω2
2 = ω2

0

(
1 + 2m

M

)
. Az ehhez tartozó sajátvektor számolását most

kihagyom, eredménye:

η2 =
1√

2 + 4α2

 1
−2α
1

 (4.6.13)

Ahol α = m
M . Ez egy olyan módus, ahol a két szélső azonos irányba mozdul el, a középső viszont

ellentétesen. A bejövő tömeges szorzófaktor azért olyan, amilyen, mert a tömegközéppont nem
mozdulhat el.

4.6.2. Bal oldali összenyomás

Hattasunk a rendszerre most egy lökés szerű gerjesztőerőt, aminek az alakja:

F = F (t)

 2
−2
0

 F (t) =
f0
τ
Θ(t)Θ(τ − t) (4.6.14)

Tehát a bal oldali és a középső atomokat ellentétes irányba löki, a harmadikat pedig békén hagyja.
Erre hattatva a tömegmátrix inverzét:

F = M−1F = F

 2/m
−2/M

0

 =
2F

m

 1
−α
0

 (4.6.15)
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Most nézzük meg tippelés nélkül, hogy hogyan kell ezt felbontani a sajátbázisra. Először is,
hálistennek a η0 és η2 sajátértékek ortogonálisak, szóval nekik lehetnek a duálisok egyszerűen csak a
transzponáltak. Velük:

η0η̃0 =
1

2

 1 0 −1
0 0 0
−1 0 1

 η1η̃1 =
1

2 + 4α2

 1 −2α 1
−2α 4α2 −2α
1 −2α 1

 (4.6.16)

Ezekkel megszorozva a ható erőt:

η0η̃0 F =
F

m

 1
0
−1

 =
F

m

√
2η0 (4.6.17)

η2η̃2 F =
F

m

1

1 + 2α2

 1 + 2α2

−2α+ 4α2

1 + 2α2

 =
F

m

√
2 + 4α2η1 (4.6.18)

Ellenőrzésképp láthatjuk, hogy ezeknek az összege tényleg visszaadja F -et. A harmadik irányra
most nincs szükség.1 Beírva végre a Green-függvényes alakot a rendszer időfejlődésére, az előző
példát követve:

q =
f0
mτ

ˆ t

0

sin (ω0(t− t′))

ω0
·

 1
0
−1

+
sin (ω2(t− t′))

ω2
·

 1
−2α
1

 dt′ (4.6.19)

Ezt ismét ki tudjuk integrálni, majd megnézni az érdekes τ → 0 határesetet:

q → f0
m

sin (ω0t)

ω0
·

 1
0
−1

+
f0
m

sin (ω2t)

ω2
·

 1
−2α
1

 dt′ (4.6.20)

Mivel ω2 = ω0

√
1 + 2α, meg tudjuk nézni mi történik α = 0 határesetben: ez azt mondja ki,

hogy a középső atom sokkal nehezebb, mint a szélsők. Ekkor a középső test módusai eltűnnek,
az mozdulatlan marad. A másik kettőre pedig ebben a határesetben azonos frekvenciájú rezgések
hatnak: a jobb oldali testre kioltják egymást, a bal oldalira pedig kétszeres amplitúdójú rezgéseket
okoznak.

4.6.3. Eltolás Green-függvénnyel

Azért nézzük még meg az eltoláshoz kapcsolódó módust is, és lássuk be, hogy tényleg az eltolásokhoz
kapcsolódik. Legyen a gerjesztőerő

F = F

 1
M
m
1

 (4.6.21)

amivel

F =
f

m

1
1
1

 (4.6.22)

1Mert az nem merőleges erre a kettőre, ezért direkt olyan erőt választottam, hogy ne kelljen vele számolni. Általános
esetben mindhárom irány szerepelhetne. Ekkor a harmadik vektorunkat és a duálisát úgy kell megválasztani, hogy
teljesüljön η̃iηj = δij .
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tehát ő η1 módushoz tartozik. Ezzel a gerjesztéssel

q =
f0
mτ

ˆ t

0

sin (ω1(t− t′))

ω1
·

1
1
1

 (4.6.23)

Ne ijedjünk meg, hogy ω1 = 0-val osztunk le, helyette számoljunk tovább. Kiintegrálva, majd a
szokásos határesetet véve:

q → f0
m

sin (ω1t)

ω1
·

1
1
1

 (4.6.24)

Ezt szorozzuk be eggyel, ami t/t:

q → f0
m

sin (ω1t)

ω1t
t ·

1
1
1

 (4.6.25)

Majd használjuk ki, hogy sin ϵ
ϵ ≈ 1, ha ϵ kicsi. Nekünk most pontosan nulla, szóval elég jó lesz ez a

közelítés:

q → f0
m

t ·

1
1
1

 (4.6.26)

Tehát azt kapjuk, hogy mindhárom testet meglökve, azok egy konstans v = f0
m sebességgel fognak

reagálni. Ez egész intuitív, szóval jó látni, hogy végső soron csak ki tud jönni a rezgések nyelvén is.

4.6.4. Teljes duális rendszer

A teljesség jegyében nézzük még meg, hogy hogyan lehetne egy általános irányú gerjesztést is
kiszámolni. A bázisunk:

η0 =
1√
2

 1
0
−1

 η̃0 =
1√
2

(
1 0 −1

)
(4.6.27)

η1 =

1
1
1

 η̃1 =??? (4.6.28)

η2 =
1√

2 + 4α2

 1
−2α
1

 η̃2 =
1√

2 + 4α2

(
1 −2α 1

)
(4.6.29)

Azok a duálisok amik már megvannak jók: rájuk könnyen láthatjuk, hogy teljesül η̃iηj = δij . Ez η1
T

transzponálttal nem működne, szóval keressük meg, hogy mivel igen.
Legyen

η̃1 =
(
x y z

)
(4.6.30)

majd nézzük meg mindhárom sajátvektorral a skalárszorzatát, és követeljük meg a δ teljesülését.
Ezek rendre három egyenletet adnak:

x+ y + z = 1 (4.6.31)
x− z = 0 (4.6.32)

x− 2αy + z = 0 (4.6.33)
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Ezt kicsit átrendezve megoldja:

z = x (4.6.34)
x = αy (4.6.35)

(2α+ 1)y = 1 (4.6.36)

Tehát

x =
α

2α+ 1
(4.6.37)

y =
1

2α+ 1
(4.6.38)

z =
α

2α+ 1
(4.6.39)

(4.6.40)

Vagy tömörebben

η̃1 =
1

2α+ 1

(
α 1 α

)
(4.6.41)

Ezzel a projektorunk

η1η̃1 =
1

2α+ 1

α 1 α
α 1 α
α 1 α

 (4.6.42)

Ellenőrzésképp, hogyha ezt hattatjuk a korábbi

F =
f

m

1
1
1

 (4.6.43)

erőre, akkor eredményül:

η1η̃1 F =
f

m

1

2α+ 1

α 1 α
α 1 α
α 1 α

1
1
1

 (4.6.44)

=
f

m

1

2α+ 1

2α+ 1
2α+ 1
2α+ 1

 = F (4.6.45)

tehát jól dolgoztunk: tényleg ebbe az irányba projektál ez a diadikus szorzat.
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