4. Ora

Kisrezgések, normalmoédusok

Bar a mozgasegyenleteket konnyen fel tudjuk irni a Lagrange-i mechanika moédszereivel, lathattuk,
hogy azokat megoldani méar altaldnosan nem mindig lehet. Van viszont egy nevezetes rendszer amit
jol ismeriink és szeretlink: a harmonikus oszcillator. Ha egy adott rendszert valamilyen kozelitésben
(pl. kis szogek) at tudunk alakitani valami oszcillator-szertivé (rezgések) akkor vissza tudjuk vezetni
a problémat valami jol megoldhatora.

Emlékeztetsiil egy darab egy dimenziés harmonikus oszcillator Lagrange-fiiggvénye (valamilyen

altalanos ¢ koordinéatéaval):
1 1
L=-mg*— k¢’
qu 9 q

amit kicsit méasképp is irhatunk:
1. . 1
L= 5qmq — 5akq
Ha tobb, akar egymassal kolesonhatd rugénk is van, akkor is ilyen alakt lesz a megoldas. Viszont
tobb koordinata esetén g helyett g vektoraink lesznek, a Lagrange viszont egy skalar mennyiség.
Ahhoz hogy skalart kapjunk vektorokbol, a tippelt alak a tobb rugés Lagrange-ra:

L=-¢"Mg—~q¢'D
tehat sorvektor, matrix, oszlopvektor alaki tagjaink kell hogy legyenek.
Ennek az alaknak van egy nagy elénye: ismerdsen néz ki, és az Euler-Lagrange egyenlet is teljesen
hasonlé egy harmonikus oszcillatoréra:

doL oL
dt 9q dq
Mg=-Dg
i=-M"'Dg
§=-4Aq

végeredményéiil pedig ilyen alakti mozgésegyenletet kapunk. Ha itt nem vektorok lennének, akkor ez
egy szogfiggvény diffegyenlete lenne: mivel tobb dimenzioban vagyunk, jo 6tlet az, ha a megoldast
szogfliggvények linearkombinécidjaként keressiik, valamilyen

q= Z ciﬂi cos (wit + &;)
i

alakban. Az allitas az, hogy ezek az n vektorok (amikbdl kikombinalhato a tényleges megoldéas)
sajatvektorai az A matrixnak: Gket hivjuk normalmédusoknak. A szogfiiggvényekben megjelens
w frekvencidk pedig a hozzajuk tartozo sajatfrekvenciak.

Ez igy még egész szaraznak tiinhet: par példa utan megbaratkozunk vele. A lényeges lépések
minden esetre:

e Felirjuk méatrixosan a Lagrange fiiggvényt (akar kozelitésekkel).
e Kiszamoljuk az A = M _12 méatrixot (ez egy invertalas aztan egy méatrixszorzas).

o Megkeressiik a sajatrendszerét, amibdl adédnak a megoldasaink.



4.1. példa: Csuszkalé inga

Vegyilink egy M tomegd testet, és rogzitsiik egy sinre a gravitacioval merdlegesen. Erre akasszunk
egy | hossziisdgu ingat, rajta egy m tomeggel. Milyen mozgdst végez a rendszer kis kitérések esetén?

X
-

1. 4bra. Sinen cstiszkélo testhez rogzitett inga.

Nézziik meg ezt a példat két féle megoldason keresztiil. Minden esetre a kiindulasi pont a
Lagrange-lesz, amit irjunk fel az egyensulyi helyzettdl vett eltérésekkel. Ez a példa egyszerti:
ranézésre akkor van egyensilyban a rendszer, ha x = 0 és 9 = 0: ezek mar magukban jé altalanos
koordinatak. Kiindulésul a Descartes-i Lagrange:

1 1 1
L= §M§c2 + 5My2 +5m (Tm? + Ym?) — Mmgym (4.1.1)

Amire még ki kell roni a kényszereinket. Egyrészt a test a sinen mozog, tehat y = konst., masrészt
pedig az inga hossza fix: ezt mar lattuk, a polarkoordinatéak teljesitik automatikusan.
A kis témegpont koordinatéi

L Isinp \ [z Ising
Tm =Ty + (—lcos cp> N (0) + <—lcos go) (4.1.2)

£ =M+ 5m (552 + 1202 4 2139 cos 19) + mgl cos 9 (4.1.3)

tehat kis matekkal

Ebbdl a Lagrange-bol kell megmondanunk a mozgést. ElGszor nézziink meg egy specidlisabb utat
ami altalaban nem miikodik, de ennél a feladatnal egyszertibb lesz miatta az életiink. Aztan a
megoldas tudataban valtsunk at a szisztematikus, mindig miik6d6é modszerekre.

4.1.1. Lendiiletmegmaradas

Vegylik észre, hogy x ciklikus: tehat p, megmarad. Ezért

Dy = g—ﬁ = M + mi + mil cos 9 = konst. (4.1.4)
by



Hogyha csak a kis szogekre vagyunk kivancsiak, akkor els6 rendben

@(m+ M) +mld = A’ (4.1.5)
= —mTlMﬁJrA (4.1.6)
/:’Udt: —/mTlMﬁdt+/Adt (4.1.7)
2(t) = —mTlMﬁ—l—At—l—B (4.1.8)

Ami marad még, az a masik valtozé Euler-Lagrange egyenlete:

% = —mlid sin g — mgl sin ¥ g'g = mi%) 4+ mli cos ¥ (4.1.9)
mi?9 + mli cos 9 — mlid sin ¥ = —mlid sin g — mgl sin 9 (4.1.10)

Amire alkalmazzuk a is szoges kozelitést, és egyszertsitsiink. A kozelitésben most elsd rendig megyiink
el, mert a nem-szogfiiggvényeket tartalmazo mi?v tag elsrendi a szogben: a tobbit is célszert eddig
kozeliteni.

|
z9+7i:—%19 (4.1.11)
Ebbe be tudjuk irni x(¢)-t a lendiiletmegmaradéasbol kiszamitott idsfiiggéssel:
— 9 =—=9 4.1.12
m+ M l ( )
m . g
1-— ¥ =—-=9 4.1.13
< m + M) l ( )
- gm+ M
Y=—-= 0 4.1.14
i ( )

Ez egy ismerGs differencidlegyenlet: a szogfliggvények mésodik derivaltja pont egy negativ elGjellel
aranyos sajat magukkal. Keressiik tehat a megoldast

¥(t) = C cos (wt + 9) (4.1.15)
alakban. Ezt visszairva M

—Cu?cos (wt+8) = — LT My (4.1.16)

I M

tehat megoldja a tippelt fliggvényiink a mozgésegyenletet, ha

s gm+M
-7 4.1.17
Osszegezve, a megoldasunk a két valtozora:

I(t) = C cos (wt + 6) (4.1.18)
m(t):—Cm+Mcos(wt+5)+At+B (4.1.19)

Ami azt mutatja, hogy az inga oszcillal, az 6t tartd test mozgasa pedig egy azonos frekvenciaja
oszcillaciobol és egy x irdanyt egyenletes mozgasbol all.



4.1.2. Altaldnos megoldas

A fenti megoldas miikodott, de kihasznalta a lendiilet megmaradaséat: sajnos ezt nem mindig tudjuk
megtenni. Hogy a bonyolultabb feladatok megoldasahoz sziikséges matrixos irasmodot gyakoroljuk,
alkalmazzuk azt is erre a feladatra.

Elgszor is, fel kell irnunk a Lagrange-ot matrixosan az altaldnos koordinatakkal,

1 1
L= §QM(J - 5@2‘1 (4-1-20)

alakban. Na ez igy még nem fog menni a mi Lagrangunkra, szoval kozelitsiink most rogton a

Lagrange-ban. Menjink el a szogben méasodfokig: igy a derivaldsok utan elséfoku tagok lesznek a
2

mozgésegyenletben. Ebben a kozelitésben cosd ~ 1 — %, tehat

L= SMi* + Jm (2 + 129 + 2000 — 13 992 ) + mgl —5mgli? (4.1.21)

Itt két tagot is elhagyhatunk: az els alahtzott méar harmadfoki, a masodik pedig egy konstans. Ez
mar felirhat6 szépen, mint

O WOOC WO we

Elvégezve a méatrixos alakra a derivalgatast, az Euler-Lagrange

Mg = —Dgq (4.1.23)
§=-M""Dq (4.1.24)

Keressiik a ¢ megoldasat valamilyen tippelt probafiiggvények linearis kombinéci6jaként:
q= Z cin, cos (wit + 6;) (4.1.25)
i

Hogy megtalaljuk ezeket az n vektorokat és w frekvencidkat, meg kell oldanunk az A = M 712
métrix sajatprobléméjat. ElGszor kell a tomegmétrix inverze, ami két dimenziéban egyszertibb:

1
M= oM (4.1.26)

a determinansbol és a (méatrix értelemben vett) adjungalt matrixbol tevédik ossze. Tehat nekiink

1 mi? —ml
_1 _
L= m(m + M)I? —m?I? (—ml M + m) (4.1.27)
1 mi? —ml
-1_
N Ve <—ml M+m> (4.1.28)
Marad a matrixszorzas, ami most relative gyorsan megvan:
1 0 —m2i%g 0 _mg
A= Vimi (0 (M +m)mgl) — \0  Mimg (4.1.29)

Ennek a sajatértékeit jeloljiik w?-el. A rajuk vonatkozo sajatértékegyenlet pedig a spuros-determinénsos

képletbdl
M+mg
2 2
4.1.
w < [T w> 0 (4.1.30)




Ennek két megoldasa van: egyrészt lehet wg = 0. Masrészt lehet

M+mgyg
2
— < 4.1.31
“ M1 (4.1.31)
Nézziik meg a hozzajuk tartozo sajatvektorokat! Az elss esetben

0-0 -
< 0 vt 0)77(): 0 (4.1.32)

M 1

Ennek normalt megoldasa:

no = <(1)> (4.1.33)

Van tehat egy komponensiink, ami az x irdnyban wg = 0 frekvenciaval oszcillal: ez nem egy rezgés,
tehét a modszertanunk nem alkalmas a targyalasara. Egyébként 6 az, ami egy egyenletes eltolasként
és sebességként jelenik meg a megoldasban.

A masik sajatértékre

_M+mg —mg
< ](\)4 ! M >17:0 (4.1.34)

amit megold

n= <_ "‘FZM> (4.1.35)

Ez a sz0g iranyaban egy w frekvencias oszcillacid, ami az x irdnyra egy —m"JZZM faktorral terjed at. A
mozgasegyenletek megoldasa tehat ebben a formalizmusban:

<§> =¢ <_7'{n+§\4> cos (wt +0) + B (é) cos (0t + do) (4.1.36)

Ez szépen visszaadja a "rendes" megoldasunk oszcillald részét: lathatjuk viszont, hogy az egyenes
mozgas kiesett.

4.2. példa: Rudas inga

Vegytink egy [ hosszuisédgi ingat, aminek a végére rogzitsiink egy M tomegpontot. Ezen a ponton
flizzlink 4t az ingara merdlegesen egy sint: erre pedig rakjunk egy m tomegi testet. Mik a
normdlmddusok?

2. 4bra. Rudas inga abraja. A valtozok nekiink 6 és x helyett ¢ és r



Tippeljiik meg ismét a jo altalanos koordinatakat: ha a tomegek egybeesnek, és az inga pont
lefelé mutat, egyensulyban vagyunk. Legyenek az ettdl valo eltérés altalanos koordinatéai ¢ és r. Az
M tomegpont Descartes-i koordinatai (a potencial nullpontjahoz illeszkedve):

@Z) - <—llsj:2;pgp> (4.2.1)

A kis tomegpont méar bonyolultabb: ahhoz kell a rud és a horizont kézotti szog. Kis geometriaval

belathatd, hogy az is . Ezzel
<”3m> _ (xM > + (r €8 “0> (4.2.2)
Ym Ym TS @

T _ lpcosp (4.2.3)
YM lpsin -

Tm\ _ [l@cosp —rosing +1cose (4.2.4)
ym /)  \lpsinp — rpcose — 7 sinp o

Derivéalva:

Emeljiik ezeket négyzetre:

v+ yu? = 1292 (4.2.5)

T = ((I¢ + 7) cos @ — r¢ sin p)? Y = ((Ip — 7)sing — r¢pcos ¢)? (4.2.6)
Tn? = (19 + 7)% cos® p + r?¢? sin? ¢ — 2(1p + 7)r¢ cos psin g (4.2.7)

ym? = (I¢ — )2 sin? o + r2p% cos? ¢ — 2(1p — 7)1 cos @ sin (4.2.8)

Osszeadva a komponenseket

T 4+ ym? = (I +7)% cos? ¢ + (I — )2 sin” o+
+1r25%sin? o + 122 cos? o+ (4.2.9)
—2(lp + 7)rpcos psing — 2(lp — 7)1 cos g sin @
.92 .2_ 2.2 .9 .. 2 2 .92 .9 ..\.2
T+ ym” = (I59° + 7% + 2lpr) cos” ¢ + (179" 4 7= — 21Hr) sin® p+

4.2.10

+12p? — 4rlp? cos psin ¢ ( )

T2 + Y2 = (1P9% +72) cos® ¢ + 20pr cos® ¢ + (12¢% + 72) sin? ¢ — 207 sin® o+ (42.1)
+12p? — 4rlp? cos psin ¢ o

Tn? + Y = 27 (cos® o — sin? @) + 12p% 4+ 7% + r2p? — 4rlp? cos psin ¢ (4.2.12)

T+ ym? = 21 (1 — 2sin? @) + 120% + 72 4+ r29? — 4rlp? cos psin @ (4.2.13)

T+ ym? = 21 + 120? + 72 + 12p? — 4rlp? cos psin g — 4l sin® ¢ (4.2.14)

Amikkel a kinetikus tagok nagyjaboél készen is vannak. A potencialis:
V =—Mglcosp —mg(lcosp — rsinp) (4.2.15)

Ha rezgésekre vagyunk kivancsiak, megint at kell irni az ebbdl kapott Lagrange-fiiggvényt valamilyen
kozelitésekkel. A kis szog itt is miikddik, egy pontig:

T? + Yin? = 2008 + 1PO? + 17 + r2? — dlrgPp — Algre? (4.2.16)



Viszont két valtozonk van: z-re is ki kell szabnunk valamit, ha benne is kicsik a rezgések. Praktikai
szempontbol pedig az a célunk, hogy métrixosan tudjuk felirni a kinetikus tagot, tehat a tagjainkban
csak 7 és ¢ szerepeljenek (szigorian méasodrendben), maguk a valtozok ne. Ezt a két problémét
egy csapasra tudjuk megoldani, ha feltessziik hogy r <[ tehat 7 < 1. Ekkor megjeldlve, hogy mi
hanyadrendd a kis valtozokban:

.2 -2 9 .T 2 .2 27'"2 27“2-2 2T .2 9 . T o
~—~ (9(~2) ~—~ —— —— N——
0(2) 0(2) 0(4) 0(4) 0(4)

lathatjuk, hogy csak az els§ harom tag kell nekiink: egyrészt a tobbi mér negyedrendt, masrészt
pont 6k azok, amik felirhatok matrixosan. A teljesség jegyében még nézziik meg a potencialt is:

Myl l
Ve~ Mg +29 02 g+ 52 gl Do (4.2.18)
— 2 N~ 2 S~ l
0(0) 0@) 00 0(2) S~~~
0(2)
Igy a Lagrange
1 1
ahol
M=(" mi p—("° g (4.2.20)
=" \ml *(M+m) = \mg (m+M)lg -
A normalmodusok megtalalasahoz ismét szamitsuk ki az A = M 712 métrixot! Ehhez
_ 1 PB(M+m) —ml 1 iMEm
M= =— (" m 4.2.21
— ml?(M +m) — m?2[? ( —ml m I\ -1 1 ( )
Amivel

Ao L Sy (0 L _mg (1
= VA | L)JMINy mEMy )=

Amibdl a sajatértékek egyenlete:

A <M—m> 2! (g)2 —0 (4.2.23)

) (4.2.22)

o~
ko

Most rabizva a szimbolikus programokra a megoldést, azok

wi= % wi=-——2 (4.2.24)

A normalmodusok pedig (normalas nélkiil):

= (2) - (‘leM) (4.2.25)



Gerjesztések

A harmonikus mozgasokkal mér jol megbaratkoztunk. Ezeknek eggyel bonyolultabb esete, ha vessziik
az eddigi rezgs rendszeriinket, és rakapcsolunk valami kiils6 erét. Arra vagyunk kivancsiak, hogy
mi lesz ekkor a mozgas, feltéve, hogy a kiils6 erd nélkiili rendszert mar ismerjiik. Egy matekos
ismétlésként nézzik a kovetkezd differencidlegyenletet:

(0F +wh)z(t) = f(t)

és gyorsan vegylk at a lépéseket a megoldasahoz.
Elgszor is: ez bonyolult. Oldjuk meg el§szor x helyett valami G fliggvényre abban az eseten, ha
a jobb oldalt szerepl6 erd csak egy Dirac-delta.

(07 +wi)G(t) = 8(1)

O azért jo nekiink, mert az ismeretében tetszdleges f(t) erére meg tudjuk mondani a megoldast:

x(t) = /_OO Gt —t)f(t)dt

Ezt ha behelyettesitjiik az eredeti egyenletbe, akkor lathatjuk, hogy megoldja azt. Minden esetre
még csak alrébbtoltuk a probléméat: most = helyett a G Green-fliggvényt kell megtalalnunk. Ez
kinézhetd tablazatokbol, példaul a harmonikus oszcillator rendszerére:
sin (wot
G(t) = o ™)

wo
amivel tetszdleges gerjesztGerdre fel tudjuk irni a megoldast, a fenti integréllal.

Persze minket most a méatrixos jelolés érdekel. Ekkor a mozgésegyenletiink igazabol

Mg+Dg=FE

Ezt kicsit alakitva
i+M 'Dg=M"'F

Hasonléan a fentihez, ennek altaldnos megoldasa helyett elGszor nézziik a
(9F + M D)G(H) = 5(t)

egyenletet. A sima oszcillator megoldésabol idézziik vissza, hogy megtalaltuk M _IQ sajatrendszerét:
ezek voltak a normalmoédusok, amikre

(M'D)n; = win;

A sajatvektorok diadikus szorzatat felhasznalva pedig felirhatunk két fontos méatrixot veliik:

I="mi M™'D =3 wini
i

)

Ahol megjelenik 7);, a sajatvektorhoz tartozé dudlis, amire 7;n; = J;;. Ha a sajatrendszer teljes
és ortogonalis, 6t vehetjiik egyszerten a vektor transzponaltjanak. Minden esetre ezzel a lépéssel
rogzitettiik a bazisunkat a sajatrendszerhez, amit tartsunk fejben. Ha visszairunk mindent, és addig
hunyoritunk hogy ne lassunk vektorokat, akkor ez gy néz ki mint a sima oszcillator, tehat



A sin (w;t)
PGt x — 9
-3 L

kinézet megoldast keresilink, a vektoros-matrixos részen kivil.
A matrixos részhez emlékezziink vissza, hogy a Green fiiggvény

[ G-t

alakban szerepel nekiink a megoldasban: hatni fog valamilyen vektorra. Ha mi eddig a sajatbazisban
dolgoztunk, akkor ezt az M~1F vektort is 4t kell ra transzformalni. Igy a helyes matrixos alakba
bekeriil még az M1 F vektor atirasa is erre a béazisra (meg persze egy © lépcséfiiggvény):

A sin (w;t) .
G(t) = G(t) = O() Y — i
. 7

7
Kicsit nézegetve ez két dolgot csinal. ElGszor is, hattatva a gerjeszts erdre, azt levetiti valamelyik
sajatmodus irdnyaba. Ebben az irdnyban pontosan tigy hat, mint a sima oszcillatorra a gerjesztés.
Ezeket Gsszegezve az Osszes moédusra, megkapjuk a teljes hatasat a forrastagnak. Mindez persze szép

bonyolultan hangzik, széval nézziink is ra par példat!

4.3. példa: Szinuszos gerjesztés harmonikus oszcilladtorra

Bemelegitésként nézziink meg egy sima harmonikus oszcillatort, amire rdkapcsolunk egy €2 frekvenci-
aja, fo amplitadoja szinuszos gerjesztést a t = 0 pillanattol kezdve:

(0F +wi)z = f(t)
f(t) = fosin(2t)O(1)
Itt a gerjesztSerdben a O(t) lépessfiggveny a "t = 0 pillanattdl kezdve" szofordulat atfogalmazasa

matekra.
Tudjuk, hogy a Green fiiggvény ismeretében a megoldés

= / Gt —t)f(t)dt (4.3.3)
és hogy a sima oszcillatorra .
G(t) = @(t)S“;‘*’t (4.3.4)

Mivel a forrasmentes rendszer egy sima harmonikus oszcillator, amit ismeriink, nincs més dolgunk,
mint beirni ezeket az integralba, ligyelve, hogy minek mi az argumentuma:

/ ot Sm“(t smwlt = 1) ¢ Gin ()¢t (4.3.5)

Nézziik meg mit csindlnak ezek a lépestfiiggvények. A O(t') annyit tud, hogy ¢ = 0 alatt nulla,
felette pedig egy. Ezzel be van szorozva az integrandus: tehét annyit tesz, mintha —oo helyett 0-t6l
integralnank. A maésik, O(t — t') akkor lesz nulla, ha t — ¢’ < 0, tehat ha ¢’ > t. Ez egy felss korlatot
ad az integralunknak t-nél. Ezeket beirva, illetve kiemelve mindent ami konstans:

x(t) = fO/O sin [w(t — t')] sin (Q¢")dt’ (4.3.6)

w
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Nézziik meg hogyan kell elvégezni egy ilyen integrélt kézzel, papiron. El&szor is, trigonometridbol
tudjuk, hogy

cos(xz + y) = cosxcosy — sinxsiny

cos(x —y) = cosxcosy + sinxsiny
Az als6bol kivonva a folsét:
cos(x —y) — cos(x +y) = 2sinzsiny (4.3.9)

Tehat nekiink:

cos [w(t —t') — Q'] — cos [w(t — t') + Q']

sin [w(t — t')] sin (Q') = 5 (4.3.10)
Amivel az integralunk két rész 6sszegébdl fog allni:
1 ¢ / / / 1 ¢ / / /
5 [ cos [w(t—1t") —Qt'|dt’ — 5 | cos [w(t —t") + Qt']dt (4.3.11)
0 0
Nézziik most csak az els6t, és vezessiink be egy u valtozdcserét:
u=w(t—t)—-Qt (4.3.12)
du
T =—w—-—0=—-(Q+w) (4.3.13)
Tehét az integral:
t 1
/0 cos [w(t —t') — Q']dt’ = 0t /cos udu (4.3.14)
Amire kell még figyelniink, azok a hatarok. Ezek rendre:
u(t' =0) = wt u(t' =t) = —Qt (4.3.15)

ahol feltiinhet, hogy a fenti hatar igazabdl lentebb van, mint a lenti. Ezeket felcserélhetjiik, ami hoz
egy negativ szorzot az integral elé, igy:

1 1 wt
- / cosudu = / cos udu (4.3.16)
Ezt mar egyszeri kiintegralni:
1 wt 1
0t /Qt cosudu = Ot [sinwt — sin (—Qt)] (4.3.17)
=0t w [sin wt + sin ¢] (4.3.18)

A masik integralunk is hasonlo lesz, annyi kiilonbséggel, hogy ott

w=w(t—t)+Qt (4.3.19)

dw
= eTe=0-uw (4.3.20)
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illetve

w(t' =0) = wt w(t' =t)=Ot (4.3.21)

Tehét ez az integral:

t 1 Qt
/ cos [w(t —t') + Qt'|dt’ = / cos wdw (4.3.22)
0 Q-w wt
1

=00 [sin Qt — sin wt] (4.3.23)

Véve a kettd kiilonbségét, kozos nevezdre tudunk hozni:

1
Ot [sin wt + sin Q] — a0 [sin Qt — sinwt] = (4.3.24)
(Q —w)sinwt + (2 — w)sinQt — (Q+ w) sin Q% + (Q + w) sinwt
_ (4.3.25)
Q+w)(Q—w)
:2Q sinwt — 2w sin Q¢ (4.3.26)

02 — 2
Visszairva minden elhagyott szorzo faktort, ezzel a megoldasunk:

a(t)

o Qsinwt —wsin Q¢
Cw 02 — w2

(4.3.27)

Igy megkaptuk egzakt formaban a kitérés-idé fiiggvényt. Vele mar tudunk szamolni barmit, ami
érdekelhet a mozgasrol. Most példaul nézziik meg, hogy hol lesz a kitérés nulla, tehéat

2(to) =0 (4.3.28)

Ehhez
fo Qsinwty — wsin Qg
w 02 — w2

Qsinwty —wsinQtg =0

=0 4.3.29

4.3.30
Qsinwty = wsin Nty 4.3.31
sinwty w

sinQtg Q
Vegyiik azt a speciélis esetet, ahol 2 = 2w. Ekkor

—_—~ o~ o~ o~
—_  ~— —  ~—

4.3.32

sin wig 1

ittt 4.3.33
sin (2wtp) 2 ( )
Egy addiciés tétel utan
sin2x = 2sinz cosx (4.3.34)
tehat
sin wig 1
= 4.3.35
2sinwtgcoswty 2 ( )
1
=1 (4.3.36)
cos wtg

Ami teljesiil, ha
wty = 2km kelZ (4.3.37)
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4.4. példa: Tripla rugos kéttest rendszer

Most nézziink valami tényleges fizikai rendszert ami nem csak kozelitve lesz oszcillator: két kiilonbozd
m1, mg tomegd golyot, amiket késson Ossze egymaéssal egy K allandoju rugé; illetve a hozzajuk
kozelebbi falakkal 1-1 rendre ki és ko alland6ja rugd.

3. dbra. Rugos rendszer vazlatos rajza.

Legyenek az altaldnos koordinatéink az egyensulyi helyzettdl valo eltérést leir ¢ és go. Ekkor a
Lagrange:

1 o 1 g Lo 15 1 2
== - — —k1q] — =kog5 — =K (q2 — 4.4.1
L " + gmade” — Skigi — Skedy — 5 (@2 —q1) (4.4.1)
Ezt matrixossa alakithatjuk:
N\NT . T
3 (@) (0 ) @) 0) (50 %) G) e
2 \ @2 0 me) \g2) 2 \@ -K ko + K ) \ g2 o
N———
M =D
Visszaidézve még a sima rugoknal hasznalt w? = % frekvenciat, dimenzidtlanitani is tudjuk a
matrixokat, majd megoldani a sajatérték-problémat.
_ kit+K _K
/m2) \ = 2+ s s
=M-1
Legyen w? = 7’;—11, w3 = 7%, a= k% és B = %, amikkel
wi(l+a) —wa )
A= ! 4.4.4
(" w0t )
Végiil, ha bevezetjik még v = :—g—et:
1
1+« -«
A= wi 4.4.5
! (—75 7(1+B)> (445)

Az altalanos megoldéshoz ennek kellene megoldani a sajatérték-problémajat.

4.5. példa: Haromrugéds rendszer gerjesztése

Nézziikk meg az el6z6 rendszert, csak kicsit leegyszertsitve az elrendezést, hogy tiikorszimmetrikus
legyen. Hattassuk erre egy er6t a kovetkezd alakban:

f(t) = %@(t)@(f — 1) (4.5.1)

Tehat egy konstans erd a t € [0, 7] idSintervallumban, azon kiviil pedig nulla. Diskutaljuk, hogy mi
torténik annak fliggvényében, hogy melyik testre hatunk vele.



13

4. dbra. Falas-rugos rendszer.

4.5.1. Sajatmoédusok

Legyen most szimmetrikus a rendszer, tehit m; = mo és k1 = ko # K. Emlékeztetsiil, ekkor a
matrixaink:
_(m 0 _(k+ K -K
M= <O m) D= ( -K k—i—K) (4.5.2)

D (4.5.3)

amivel egyszertien

A sajatértékekre ekkor:

<m _ w2>2 =0 (4.5.4)

Legyen a lustasig kedvéért wg = k/m és Q% = K/m, igy

(2 +wf —w?)’ =4 =0 (4.5.5)
w?=2(QF + wi)w? + (W +wg)* — Q=0 (4.5.6)
w? =0f + wi + \/(Qg +wd)? — (B +wd)?+Qf (4.5.7)
w? = wd Wi = wi + 203 (4.5.8)

Az ezekhez tartozé sajatmodusok pedig, mivel

w2 + Q2 —Q2

innen kis matekkal

m = \}5 G) n2 = \}Q <11> (4.5.10)

Ezek ugyebar két harmonikus mozgast irnak le: az elsénél a két test azonos iranyba mozdul ki, a
mésiknal pedig ellentétesbe. Ezekhez a modusokhoz kell illeszteniink a gerjesztésiinket. Tehat a Green
fliggvénytink komponensei a sajatmodusok rendszerén, kihasznalva, hogy most teljes ortonormalt:

1 sin (w;t) . sin(wit) o sin (wat) T
—_ )Gt = gy = Y _ 4.5.11
(57) 20 2 M T (51
Ha ezt hattatjuk a gerjeszt& erénkre, akkor az MT tagok gyakorlatilag egy projektorfelbontast fognak
rajta végezni: fel kell irnunk a forrastagunkat ezekkel a vektorokkal.
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4.5.2. Azonos lokés

Ha mindkét testet azonos erével 10kdossiik, akkor ezen a bazison az erd:

_ Fit) (1 1 Jo
1 = —X . . —_ —
M F = - <1> +0 <_1> F(t) - O(t)O(r —t) (4.5.12)
Tehét a koordinatak idéfejlédése:
_ > / oy oy fo sin (w1 (t — t,)) 1 /
q= /OO ohe(r—the -t )—mT o NE: (4.5.13)

Vegyiik azt az esetet, ahol ¢ > 7, és nézziikk meg mi torténik a lépeséfiiggvényekkel. A O(t') a
lenti hatart fogja megadni, hiszen —oco és 0 kozt nullaval szoroz mindent. A masik ketts a fels
hatart: az egyik ¢ a masik 7 felett szoroz mindent nulldval. Mivel itt 7 a kisebb, &6 lesz a fels6

hatarunk:
T : t— t/
q= ﬁw . <1> d¢ (4.5.14)
= Jo mt w1 1

Az integréalas utan:

g:

5 [cos (wo(t — 7)) — cos (wot)] - <1> (4.5.15)

mTwg

Nézziik meg mi torténik, ha 7 — 0. Ez annak felel meg, hogy a rendszer egy pillanatnyi 16kést kap,
aztan szabadon fejlédik az idében. Egy kis atirassal:

fo cos(wo(t — 7)) — cos (wot) (1> (4.5.16)

2
mwy T 1

g:

ami ebben a hataresetben nem mas lesz, mint egy derivalt régimédi képlete. Tehat:

q—

sin wot - <D (4.5.17)

mwo
a kis 16ket utan a rugdk az els6 modusban rezegnek, azonos iranyban. Ennek a frekvencidja wy, az
amplitudoja pedig fo/mwy.
4.5.3. Baloldali 16kés

Mi torténik, ha csak az els6 rugoéra hat kiilsé gerjesztés? Ekkor az erd felbontasa

F= g : G) + g : (_11) (4.5.18)

Ezt kétféleképpen is megkaphatjuk: egyrészt ezt adja a didaktikus szorzatbol készitett két projektor.
Masrészt vegyiik észre, hogy ha 6ssze adjuk Sket

F = g G) - g (_11> = g (3) (4.5.19)

akkor csak az els6 komponensben lesz rezgés, pont ahogyan azt a feladat kéri. Ha nem vagyunk
biztosak, akkor csinaljuk meg a projektalast.
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Minden esetre most az integralunkban két tag is lesz:

= o [Tnalt=t), G) L sina(t =) (11> » w520)
0

= 2mrT w1 w2

Ezt kiszamitva

q= fo 5 [cos (wi(t — 7)) — cos (wit)]- <i> +

= 2mTwy

o 5 [cos (wa(t — 7)) — cos (wat)]- (_11) (4.5.21)

2mTws;

Itt szintén alkalmazzuk a 7 — 0 hataresetet:

Jo . 1 Jfo . 1
q— ST sinwyt - 1)t ST sin wat - 1 (4.5.22)

Ez a mozgas tehat két részbdl all: azonos irdnyban feleakkora amplitudoju rezgést végeznek a
rugdk mint az elsG esetben; viszont megjelenik egy ellentétes irdnyt modus is, a hozza tartozé wo
frekvenciaval.

Vegyiik még ellendrzésiil radikalis esetnek azt, amikor a kézépss rugon K = 0, mert ekkor

wi = wi + 203 (4.5.23)
Beirva: r s
0 . 1 0 . 1
q— Imiog sin wot - <1> + CT sin wot - <_1> (4.5.25)

ami kis rendezés utan

q—

sin wot - <(1)) (4.5.26)

Aminek oriiliink: az elsé test pontosan tigy mozog, mint a fenti gerjesztd erd esetén; a méasodik pedig
nyugalomban marad. Ez logikus, mert K = 0 mellett nincs rugd ami 6sszekétné a megmozgatott
testtel.

mwo

4.5.4. Ellentétes szinuszos gerjesztés

Nézziink meg erre a rendszerre is egy szinuszos gerjesztést ¢ = 0 kezdettel, ami ellentétesen hat a két
testre. Tehat a gerjesztd erénk:

E(t) = O(t) fosin (2t)n2 (4.5.27)
Erre hattatva a tomegmaétrix inverzét:
M=ot )@sm (Qt)n2 (4.5.28)

majd pedig a Green-fiiggvényt, ami most ismét csak az egyik moéduson hat:

t—1
q= / o — )2t =) g, )fo sin (Q')npdt! (4.5.29)
w2

A hatérok ismét a lépcs6fiiggvényekbdl adodnak: az elsé miatt a fenti hatér ¢, a masodik miatt a

lenti pedig 0. Tehat:
Jo b Ny s / 1 /
= t—t Ot dt 4.5.30
a= oo [ sin (et —)sin ) (45.30)

Ez az integral ugyanaz, mint a sima oszcillatornal, szoval a kiszamitasat most kihagyjuk. Eredménye:

fo Qsinwst —wosint [ 1
4= mws 02 — w? -1

(4.5.31)
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4.6. példa: Egyszeri molekula

Modellezziink tgy egy kis molekulat, mint 3 test Osszekotve 2 rugoval. Legyenek a rugdk és a
kinti tomegek azonosak. Mik lesznek ekkor a sajatmodusok, és hogyan hatnak a rendszerre a kiilsé
gerjesztések?

5. abra. Egy egyszerti molekula vazlatos rajza.

4.6.1. Normalmodusok

Felirva a Lagrange-ot, kis munkaval kideriil, hogy itt a métrixaink:

m 0 0 k —k 0
M=1{0 M 0 D=|-k 2k —k (4.6.1)
0 0 m 0 —k k

Mivel M diagonalis, konnyt invertalni: egyszertien a tomegek reciprokai kellenek egy diagonélis
métrixba. A szorzast elvégezve:

1 ~1 0
A=uwj|-2 222 -2 (4.6.2)
0 ~1 1

ahol bevezettem megint % = w%-et. Ebbdl a sajatértékre vonatkozo egyenlet:
2 2y2 2 m 2 4m 9 2
(wg — w?) (Qwoﬂfw ) *2WOM(WO*W )=0 (4.6.3)

Ranézésre két megoldast is be tudunk tippelni. Legyen az els6 w = wp, ami altalaban egy jo tipp.
Az ehhez tartozo sajatvektor

1-1 -1 0

—m m_ ] —m =0 (4.6.4)
0 -1 1-1

alapjan olyan lesz, hogy a mésodik komponense nulla; az els§ és utols6é pedig egymas ellentettjei.
Szépen normalva:

1 1

=—10
@\/5_1

Amivel meg is van az els6 moédus: ebben a kozépsé atom mozdulatlan, a masik ketts pedig ki-be
rezeg koriilotte.

(4.6.5)
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A masodik sajatérték is konnyen tippelhets: legyen w; = 0. Ez is teljesiti az egyenletet, és a
hozza tartozé sajatvektor lehet példaul:

1 -1 0
—no2r = lm=0 (4.6.6)
0 -1 1
1
m=|1 (4.6.7)
1

Ez egy nulla frekvencids rezgés, ami minden koordindtéra azonosan hat. Hasonlbéan a csiiszkélo
inganél latotthoz, ez sem egy rezgés igazabol: ez egy eltolés az x tengelyen, ami mindharom atomra
ugyanugy hat.

A harmadik sajatérték nehezebb: ehhez mar egy picit szamolni is kell. Tudjuk, hogy ez egyik
sajatérték wi, szoval emeljiink ki a sajatérték egyenletébdsl (wg — w?)-et:

(wf —w?)? (2uh 0 —w?) — 2w (wh —w?) = (4.6.5)
(§ —w?) |(wf —w?) (2877 —w?) —2wi ] = (4.6.9)
Wt~ W2 (1+2M) + 2w — 2w g% —0 (4.6.10)

Wt w22 ( ) - (4.6.11)

w? Wt —uf (1+297)] =0

Tehat a harmadik megoldas w? = w? (1 + 2%) Az ehhez tartozd sajatvektor szamolasat most
kihagyom, eredménye:

(4.6.12)

1 1

= — | 2«
2 V24 4a2 1

Ahol a = §;. Ez egy olyan modus, ahol a két széls6 azonos irdnyba mozdul el, a kozépsd viszont
ellentétesen. A bejovs tomeges szorzofaktor azért olyan, amilyen, mert a tomegkdzéppont nem
mozdulhat el.

(4.6.13)

4.6.2. Bal oldali 6sszenyomas

Hattasunk a rendszerre most egy 16kés szerii gerjesztSerst, aminek az alakja:

fo

F=F(t) | -2 F(t) = 20()e(r — 1) (4.6.14)

Tehat a bal oldali és a koézépsd atomokat ellentétes iranyba 16ki, a harmadikat pedig békén hagyja.
Erre hattatva a tomegmaétrix inverzét:

2/m 1
F=M'"F=F|-=2/M|="—|-a (4.6.15)
0 ™\ o
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Most nézziik meg tippelés nélkiil, hogy hogyan kell ezt felbontani a sajatbazisra. El&szor is,
hélistennek a ng és 72 sajétértékek ortogonalisak, szoval nekik lehetnek a duélisok egyszertien csak a
transzponaltak. Veliik:

L[ 0 -1 ) 1 —2a 1
mp=-(0 0 0 mn=-———5|—-20 40* 20 (4.6.16)
2\-1 0 1 2rdat\y an

1
5 F F
oMo E:f 0 == —\/57)0 (4.6.17)
oo m\ m Y <o
o1 1+ 202 7
oy F =———— [ —2a+4a? | = —v/2+4a2n (4.6.18)
= m 1+ 202 1 9 m -
+ 2«

Ellen6rzésképp lathatjuk, hogy ezeknek az Osszege tényleg visszaadja F-et. A harmadik iranyra
most nincs sziikség.! Befrva végre a Green-fiiggvényes alakot a rendszer idéfejlédésére, az el6z6
példat kovetve:

, 1 : 1

t t—t t—t
o do / sin(wolt =#)) [ | [ sin(al=t) [ 5 | 4 (4.6.19)
= mT ) wo 1 w2 1

Ezt ismét ki tudjuk integralni, majd megnézni az érdekes 7 — 0 hataresetet:

, 1 . 1
t t
_ Josin(wot) (o) fosinGest) 5 ) gy (4.6.20)
= m  Wwo -1 m. W2 1

Mivel wo = wpv/1 + 2, meg tudjuk nézni mi térténik o = 0 hataresetben: ez azt mondja ki,
hogy a kozéps6 atom sokkal nehezebb, mint a széls6k. Ekkor a kdzépss test modusai eltiinnek,
az mozdulatlan marad. A maésik kettére pedig ebben a hataresetben azonos frekvenciaju rezgések
hatnak: a jobb oldali testre kioltjak egymaést, a bal oldalira pedig kétszeres amplitiid6ju rezgéseket
okoznak.

4.6.3. Eltolas Green-fiiggvénnyel

Azért nézziik még meg az eltolashoz kapcsolodd modust is, és lassuk be, hogy tényleg az eltolasokhoz
kapcsolodik. Legyen a gerjesztSerd

1
F=F|X (4.6.21)

1

amivel
1
_f

F="211 (4.6.22)

™ \1

Mert az nem meréleges erre a kettdre, ezért direkt olyan erét valasztottam, hogy ne kelljen vele szamolni. Altalanos
esetben mindharom irany szerepelhetne. Ekkor a harmadik vektorunkat és a duélisat ugy kell megvalasztani, hogy
teljesiiljon 7;n; = di;.




19

tehat 6 m1 moédushoz tartozik. Ezzel a gerjesztéssel

q:fb/otsin(W1(t—t/))_ 1 (4.6.23)

mT w1 1

Ne ijedjiink meg, hogy w; = 0-val osztunk le, helyette szamoljunk tovabb. Kiintegralva, majd a
szokisos hataresetet véve:

. 1
t
q— Josin (wit) 1 (4.6.24)
- m w1
1
Ezt szorozzuk be eggyel, ami ¢ /t:

fosin (wqt) !
g— LU (4.6.25)

= m  wit 1

Majd hasznaljuk ki, hogy % ~ 1, ha € kicsi. Nekiink most pontosan nulla, szoval elég j6 lesz ez a
kozelités:

f 1
q— EAU ] (4.6.26)
= m
1
Tehat azt kapjuk, hogy mindhérom testet meglokve, azok egy konstans v = % sebességgel fognak

reagalni. Ez egész intuitiv, szoval j6 latni, hogy végss soron csak ki tud jonni a rezgések nyelvén is.

4.6.4. Teljes dualis rendszer

A teljesség jegyében nézziik még meg, hogy hogyan lehetne egy altalanos iranya gerjesztést is
kiszamolni. A bazisunk:

1
1 1
- 0 o = — (1 0 —1 4.6.27
m=7(0 7o ﬁ( ) (4.6.27)
1
m=|1 i1 =277 (4.6.28)
1
1 1 1
= | —2« g — — (1 —2« 1 4.6.29
U2 2 + 402 1 2 2 + 4a? ( ) ( )

Azok a duélisok amik mar megvannak jok: réajuk konnyen lathatjuk, hogy teljesiil 7;n; = 0;;. Ez ﬂT
transzponélttal nem miikodne, szbval keressiik meg, hogy mivel igen. o
Legyen

m=(x y =2 (4.6.30)
majd nézziikk meg mindharom sajatvektorral a skalarszorzatat, és koveteljiilk meg a § teljesiilését.
Ezek rendre harom egyenletet adnak:

r+y+z=1 (4.6.31)
r—2z2=0 (4.6.32)
r—20y+2=0 (4.6.33)
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Ezt kicsit atrendezve megoldja:

z=ux (4.6.34)
T =ay (4.6.35)
2a+1ly=1 (4.6.36)
Tehat
o
= 4.6.37
YT +1 (4.6.37)
1
= 4.6.38
Y= 201 (4.6.38)
!
_ 4.6.39
“Toa+1 (4.6.39)
(4.6.40)
Vagy tomorebben
1
- 1 4.6.41
m= 5yt @ “) (4.6.41)
Ezzel a projektorunk
1 @ 1 @
7 = 1 4.6.42
mm =5 o (4.6.42)
1 «
Ellendrzésképp, hogyha ezt hattatjuk a korabbi
F = I 1 (4.6.43)
m
1
erére, akkor eredményil:
NS T G N (4.6.44)
=——— |« « 6.
UI/AES m2a+1
o 1 « 1
Fo 20+ 1
=3 1 2+1 ) =F (4.6.45)
matd\oa+1

tehat jol dolgoztunk: tényleg ebbe az iranyba projektal ez a diadikus szorzat.
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