6. Ora

Merev testek

Ha merev testekrsl beszéliink, az azt jelenti, hogy minden pont kozti tdvolsag fix. Ezzel a nagy
korlatozassal két féle mozgast végezhet a test: vagy minden pontja ugyanarra megy, ez lesz a
tomegkozépponti mozgas, vagy valahogy forog egy tengely koriil. Ezekkel a kinetikus tag:

1 1
K = My + jwlw

Ahol M a test Gssztomege, v, pedig a tomegkozéppont sebessége. Emlékeztetdiil, a forgasi tagban
megjelenik a tehetetlenségi nyomaték tenzor:

Qij = /dgrp(r) (51']'1'2 — ’I“ﬂ‘j)
ami olyan mint a toémeg, csak a gyorsuldsra valo tehetetlenség helyett a forgatasra vonatkozik. Ezen
feliil megjelenik még a forgatas vektoros abrézolasa w-n keresztiil: 6§ mondja meg, hogy milyen

tengelyek koriil milyen gyorsan forgunk.
Nézziink elGszor par példat arra, hogy hogyan kell kiszamolni ezt a tomegszerd métrixos izét.

6.1. példa: 242 tomegpont

N

1. abra. 2+2 tomegpont rajza.

Hatarozzuk meg ennek a 4-pont-rendszernek a tehetetlenségi tenzorat! ElGszor is: inkabb legyiink
okosak, és forgassuk el az egészet 45 fokkal, mert gy egyszeriibb. Nézve a képletet:

eij = /dgrp(r) (5ij'r2 — ’r‘ﬂ“j) (611)

nekiink itt igazabol 4 diszkrét pontunk van: csak szummaznunk kell az egyes pontokra, mert p egy
par Dirac delta, ami megeszi az integralast.

Oy = > my (8t —rkrk) (6.1.2)
k



Ezt kiirva példaul az zx komponensre:

Oy = ka (5mrk2 —rhrk) = ka (rkz — rhrk) (6.1.3)
k k
:ka(x%—i-y,%—i-zg—:ci) :ka(y,%—kz,%) (6.1.4)
k k

A z koordinata mindegyikre nulla. Az y pedig csak a ketté nagy M tdmegiire nem: ekkor ha mondjuk
2a az oldalhosszusagunk, akkor v, = v/2a

Ouz = M -2a* + M - 2a* = 4Ma* (6.1.5)
Teljesen hasonlban:
Oyy = 4ma’ (6.1.6)
Ami més, az a harmadik irany:
0,, = Z my (5zz7"k2 — 7“57"];) = ka (xi + y,%) (6.1.7)
k k

mert ebbe mar mind a négy jarulékot ad. Beirva:
Q.. =2-M-(2a*) +2-m- (2a%) = 4(M + m)a* (6.1.8)
A vegyes tagok még hatra vannak, mind a harom. Ezekbdl példaul

Oy = ka (5:53,7"“2 — :L'kyk) =0 (6.1.9)
k

mert a ¢ nulla, illetve nincs olyan tomegpont, amire zy - y5 ne lenne nulla. A tenzor tehat ebben a
forgatott rendszerben:

M 0 0
=4a®>[ 0 m 0 (6.1.10)
0 0 M+m

[©)

Jo, de minket nem ez érdekelt, hanem ennek a 45 fokkal elforgatott esete. Van mér viszont egy
métrixunk: ezt konnyen el tudjuk forgatni egy 3D-s forgdsméatrixszal, mivel

=000 (6.1.11)

Ez a matrix most, beirva a szogfliggvényekbe a 45 fokot:

1 1 0
-1 1 0 (6.1.12)

0 0 V2

Q:

Sl

A végeredmény egy kis szorozgatas utan:

m+ M m— M 0
=2 m-M m+M 0 (6.1.13)
0 0 2(m + M)

Ugyanezt kaptuk volna, ha rogtén ebben a koordinatarendszerben szamolunk: csak latszik, hogy 2
nem nulla tagot kellett volna még figyelembe venniink.



6.2. példa: Henger

Nézziink meg egy folytonos tomegeloszlasa esetet is. Mi lesz egy homogén henger tehetetlenségi
nyomatéka a témegkdzéppontra vonatkoztatva? Mivel homogén, igy

p(r) = p = konst. (6.2.1)
Felirva az integrélt:
@ij = p/dgr((sisz — TZ‘T]') (6.2.2)

de nekiink csak a henger hataraiig kell elmenniink, azokon kiviil nincs tomeg. Ehhez térjiink at
hengerkoordinatakba, ahol az integral

L/2 2 R )
O;;j —p/ dz/ rdcp/ d’r(&ijq —qiqj) (6.2.3)
L/2 0 0

Itt atirtam az eddig r-el jelolt koordinatédkat g-ra, hogy ne keverjiik 6ssze a hengerkoordinatédkbol a
sugarral.

Nézziik meg most a zarojeles kifejezést az egyes komponensekre, és hogy azt hogyan kell kifejezni
a koordinatainkkal.

ij = zz — (6..4° — qzqz) =a? 42 =72 (6.2.4)

ami feliilnézetbdl felrajzolva a problémat vizuélisan is latszik. Tehét erre a komponensre:

L/2 2 R
0,, = p/L/2 dz/o dgp/o dr 3 (6.2.5)
2T R
= pL/O dgo/o dr 3 (6.2.6)

R
= 27rpL/ dr 3 (6.2.7)
0
R R?

=2mpL— = R%L7 (6.2.8)

M
_ My, (6.2.9)

2

A masik kettére:

ij =y — (Oyyad® — ayay) = 2 + 2° = r?sin p + 27 (6.2.10)

Na ez méar bonyolultabb:

L/2 27
yy—p/ dz/ dap/ dr r(r?sin? ¢ 4 2?) (6.2.11)

L/2
L/2 2r
= / / de ( —sm Y+ R—zz) (6.2.12)
L/2 4
R* L3 R?
= dp (L— —_— 2.1
p/o ¢ (L sin o + o= =-) (6.2.13)
R* L3 R?
M
= —(L* +3R?) (6.2.15)



De szerencsére ugyanez lesz zz-re is. Minden mas tagban pedig olyanok jelennek meg, hogy

2 2 2 2
/ sin ¢ cos o</ sin 2y, / sin ¢, / COs ¢ (6.2.16)
0 0 0 0

Amik mint teljes periddusra integralnak sima szogfliggvényeket: ezeket felrajzolva belathatjuk, hogy
nullat adnak.
Tehat a tehetetlenségi tenzorunk:

A (L3R 0 0
0= Tl 0 L? + 3R? 0 (6.2.17)
0 0 62

Egy fontos részt leolvashatunk ennek jobb als6 sarkabol: ha koérbe forog egy hengeriink, a tehetetlenség
nem fiigg a z irdnyd hosszatol, nagysiga pedig %M R?. A henger feliilnézetbdl pedig nem més mint
egy korong, igy:
1
Okorong = 5MR2 (6.2.18)
Egy mésik érdekes hatareset, amikor a henger sokkal hosszabb, mint szélesebb. Ezt koznyelven radnak

hivjuk, matematikailag pedig L > R-nek, amit beirva a tenzorba megkapjuk a rid kézéppontja
koriili forgatasokra vonatkoztatott tehetetlenségét:

1
—MIL? (6.2.19)

@CM _
rd 12

Ha esetleg az érdekel minket, hogy egy rad a kozéppontja helyett az egyik vége koriill mennyire
ellenall a forgatasokra, azt a parhuzamos tengelyek (Steiner) tétele alapjan kapjuk:
vg _ oCM ) _ L2
©,;=060"" + Md" = ?M (6.2.20)

Ha a jov6ben sziikség lenne ra, akkor ennek a tételnek a métrixos alakja

e = QCM + M (5@'@2 — didj) (6.2.21)

6.3. példa: Tomeges Atwood gép
Vegyiink egy egyszerti Atwood gépet, m és M tomegekkel. Viszont most vegyiik figyelembe, hogy a

csiga is forog: az p tomegi, és R sugarti. Mik lesznek ekkor a mozgésegyenletek?

"2
R




A teljesen altalanos Lagrange-unk ezuttal:
1 %) 1 .9 1 2
L= gmyr + 5 Myy +mgyy + Mgyz + 5 Ow (6.3.1)
Kiréhatunk viszont par kényszert: mivel a kotél hossza fix, igy

Y2 =~ (6.3.2)
Vagy méasképp kifejezve, a kotél minden pontja azonos sebességgel mozog, mert kiillonben szétcsiszna:
91| = [92] = 9] (6.3.3)

A kotél pedig nem csiiszhat el a csigan: tehat

Yy = Rw (6.3.4)

Beirva még az el6z8 feladatbol a nyomatékot, a Lagrange-unk végsé alakja:
1. 1 .,
L=5y"(m+M)+g(m—My+ ny (6.3.5)

Ebbdl az Euler Lagrange eredménye:

L
gj[(m+M)+2u =g(m—M) (6.3.6)
Legyen most M = 2m, u = m, amikkel
. 1]
i [Sm + om| = —gm (6.3.7)
L2
V=9 (6.3.8)

egy konstans gyorsulast tapasztalunk.

6.4. példa: Forgatott rid

Vegytink egy m tomegi, [ hosszusagu rudat, rogzitsiik az egyik végét a plafonhoz gy, hogy forogni
tudjon, de masképp elmozdulni ne. Kezdjiik el forgatni valamilyen allandd w szogsebességgel a
felfliggesztési pontjatol lehtzott vertikalis tengely koriil. Mi lesz a riad vizszintessel bezart szoge?

A
wl?
I,m
Kis emlékeztetSként .
0 = -mi* (6.4.1)



a tehetetlenség, a rad végére merdleges forgatasokra. Itt a forgatés lefelé mutat: annak a ridra
merGleges komponense

w] =wsing (6.4.2)
ami a riad végére vonatkoztatott forgatasoknak feleltetheté meg. Itt hangsilyoznam, hogy w, vektora
nem keverend§ Ossze a ra hato erével. Ez egy axialvektor, a forgatés mit 6 ir le jobbkéz-szabély
szerint adodik, és itt a képernyd felsl az olvasé iranyaba mutat. Ha szépen szeretnénk kiszdmolni a
feladatot, akkor tenzorosan és vektorosan kellene felirni a problémét, amibgl ugyanaz fog kijonni.

7R

i i

A potencialis tagunkban vehetjiik a teljes tomeget a rud kozepébe, igy

l
V= —mgy cos (6.4.3)
Tehét a Lagrange most:
1.5 1
L= §®wL + imgl Cos (6.4.4)
L1 9 9 . 9 1
= ——ml“w’sin” ¢ + —mgl cos p (6.4.5)
23 2
Erre rakiildve egy Euler-Lagrange-ot:
1 2
0= —§mgl sin g + éml2w2 sin ¢ cos ¢ (6.4.6)
lesz a mozgasegyenlet.
Ennek egy lehetséges megoldasa
sinp =0 — =0 (6.4.7)
Ami teljesen logikus: azt irja le, hogy a rid egyenesen lefelé 16g. Ezt letudva leoszthatunk vele, igy
2
g= élw2 cos (6.4.8)
3g 1
COSP =573 (6.4.9)
Nevezziik el megszokasbol a dolgokat:
3wd
=-0 6.4.10
s =55 ( )
Na de ez korlatos, —1 < cos < 1: csak akkor lesz ez a megoldas valid, ha
3wd
°20 «q 6.4.11
2w? — ( )
3
§w§ < w? (6.4.12)

Minden més esetben csak a 0 kitérés lesz opcio. A megoldas tehat tgy néz ki, hogy a forgatés
sebességét novelve egyszer csak elkezd a rud kilengeni. Végtelen gyors forgatas esetén pedig
derékszoget tapasztalunk.
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