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6. óra

Merev testek

Ha merev testekről beszélünk, az azt jelenti, hogy minden pont közti távolság fix. Ezzel a nagy
korlátozással két féle mozgást végezhet a test: vagy minden pontja ugyanarra megy, ez lesz a
tömegközépponti mozgás, vagy valahogy forog egy tengely körül. Ezekkel a kinetikus tag:

K =
1

2
Mv20 +

1

2
ωΘω

Ahol M a test össztömege, v0 pedig a tömegközéppont sebessége. Emlékeztetőül, a forgási tagban
megjelenik a tehetetlenségi nyomaték tenzor:

Θij =

ˆ
d3rρ(r)

(
δijr

2 − rirj
)

ami olyan mint a tömeg, csak a gyorsulásra való tehetetlenség helyett a forgatásra vonatkozik. Ezen
felül megjelenik még a forgatás vektoros ábrázolása ω-n keresztül: ő mondja meg, hogy milyen
tengelyek körül milyen gyorsan forgunk.

Nézzünk először pár példát arra, hogy hogyan kell kiszámolni ezt a tömegszerű mátrixos izét.

6.1. példa: 2+2 tömegpont

1. ábra. 2+2 tömegpont rajza.

Határozzuk meg ennek a 4-pont-rendszernek a tehetetlenségi tenzorát! Először is: inkább legyünk
okosak, és forgassuk el az egészet 45 fokkal, mert úgy egyszerűbb. Nézve a képletet:

Θij =

ˆ
d3rρ(r)

(
δijr

2 − rirj
)

(6.1.1)

nekünk itt igazából 4 diszkrét pontunk van: csak szummáznunk kell az egyes pontokra, mert ρ egy
pár Dirac delta, ami megeszi az integrálást.

Θij =
∑
k

mk

(
δijr

k2 − rki r
k
j

)
(6.1.2)
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Ezt kiírva például az xx komponensre:

Θxx =
∑
k

mk

(
δxxr

k2 − rkxr
k
x

)
=

∑
k

mk

(
rk

2 − rkxr
k
x

)
(6.1.3)

=
∑
k

mk

(
x2k + y2k + z2k − x2k

)
=

∑
k

mk

(
y2k + z2k

)
(6.1.4)

A z koordináta mindegyikre nulla. Az y pedig csak a kettő nagy M tömegűre nem: ekkor ha mondjuk
2a az oldalhosszúságunk, akkor yk =

√
2a

Θxx = M · 2a2 +M · 2a2 = 4Ma2 (6.1.5)

Teljesen hasonlóan:
Θyy = 4ma2 (6.1.6)

Ami más, az a harmadik irány:

Θzz =
∑
k

mk

(
δzzr

k2 − rkz r
k
z

)
=

∑
k

mk

(
x2k + y2k

)
(6.1.7)

mert ebbe már mind a négy járulékot ad. Beírva:

Θzz = 2 ·M · (2a2) + 2 ·m · (2a2) = 4(M +m)a2 (6.1.8)

A vegyes tagok még hátra vannak, mind a három. Ezekből például

Θxy =
∑
k

mk

(
δxyr

k2 − xkyk
)
= 0 (6.1.9)

mert a δ nulla, illetve nincs olyan tömegpont, amire xk · yk ne lenne nulla. A tenzor tehát ebben a
forgatott rendszerben:

Θ = 4a2

M 0 0
0 m 0
0 0 M +m

 (6.1.10)

Jó, de minket nem ez érdekelt, hanem ennek a 45 fokkal elforgatott esete. Van már viszont egy
mátrixunk: ezt könnyen el tudjuk forgatni egy 3D-s forgásmátrixszal, mivel

Θ′ = OTΘ O (6.1.11)

Ez a mátrix most, beírva a szögfüggvényekbe a 45 fokot:

O =
1√
2

 1 1 0
−1 1 0

0 0
√
2

 (6.1.12)

A végeredmény egy kis szorozgatás után:

Θ′ = 2a2

m+M m−M 0
m−M m+M 0

0 0 2(m+M)

 (6.1.13)

Ugyanezt kaptuk volna, ha rögtön ebben a koordinátarendszerben számolunk: csak látszik, hogy 2
nem nulla tagot kellett volna még figyelembe vennünk.
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6.2. példa: Henger

Nézzünk meg egy folytonos tömegeloszlású esetet is. Mi lesz egy homogén henger tehetetlenségi
nyomatéka a tömegközéppontra vonatkoztatva? Mivel homogén, így

ρ(r) = ρ = konst. (6.2.1)

Felírva az integrált:

Θij = ρ

ˆ
d3r

(
δijr

2 − rirj
)

(6.2.2)

de nekünk csak a henger határaiig kell elmennünk, azokon kívül nincs tömeg. Ehhez térjünk át
hengerkoordinátákba, ahol az integrál

Θij = ρ

ˆ L/2

−L/2
dz
ˆ 2π

0
rdφ
ˆ R

0
dr

(
δijq

2 − qiqj
)

(6.2.3)

Itt átírtam az eddig r-el jelölt koordinátákat q-ra, hogy ne keverjük össze a hengerkoordinátákból a
sugárral.

Nézzük meg most a zárójeles kifejezést az egyes komponensekre, és hogy azt hogyan kell kifejezni
a koordinátáinkkal.

ij = zz −→ (δzzq
2 − qzqz

)
= x2 + y2 = r2 (6.2.4)

ami felülnézetből felrajzolva a problémát vizuálisan is látszik. Tehát erre a komponensre:

Θzz = ρ

ˆ L/2

−L/2
dz
ˆ 2π

0
dφ
ˆ R

0
dr r3 (6.2.5)

= ρL

ˆ 2π

0
dφ
ˆ R

0
dr r3 (6.2.6)

= 2πρL

ˆ R

0
dr r3 (6.2.7)

= 2πρL
R4

4
= R2πL

R2

2
(6.2.8)

=
M

2
R2 (6.2.9)

A másik kettőre:

ij = yy −→ (δyyq
2 − qyqy

)
= x2 + z2 = r2 sin2 φ+ z2 (6.2.10)

Na ez már bonyolultabb:

Θyy = ρ

ˆ L/2

−L/2
dz
ˆ 2π

0
dφ
ˆ R

0
dr r(r2 sin2 φ+ z2) (6.2.11)

= ρ

ˆ L/2

−L/2
dz
ˆ 2π

0
dφ (

R4

4
sin2 φ+

R2

2
z2) (6.2.12)

= ρ

ˆ 2π

0
dφ (L

R4

4
sin2 φ+

L3

3 · 4
R2

2
) (6.2.13)

= ρ(L
R4

4
π +

L3

3 · 4
R2

2
2π) (6.2.14)

=
M

12
(L2 + 3R2) (6.2.15)
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De szerencsére ugyanez lesz xx-re is. Minden más tagban pedig olyanok jelennek meg, hogy
ˆ 2π

0
sinφ cosφ ∝

ˆ 2π

0
sin 2φ,

ˆ 2π

0
sinφ,

ˆ 2π

0
cosφ (6.2.16)

Amik mint teljes periódusra integrálnak sima szögfüggvényeket: ezeket felrajzolva beláthatjuk, hogy
nullát adnak.

Tehát a tehetetlenségi tenzorunk:

Θ =
M

12

L2 + 3R2 0 0
0 L2 + 3R2 0
0 0 6R2

 (6.2.17)

Egy fontos részt leolvashatunk ennek jobb alsó sarkából: ha körbe forog egy hengerünk, a tehetetlenség
nem függ a z irányú hosszától, nagysága pedig 1

2MR2. A henger felülnézetből pedig nem más mint
egy korong, így:

Θkorong =
1

2
MR2 (6.2.18)

Egy másik érdekes határeset, amikor a henger sokkal hosszabb, mint szélesebb. Ezt köznyelven rúdnak
hívjuk, matematikailag pedig L ≫ R-nek, amit beírva a tenzorba megkapjuk a rúd középpontja
körüli forgatásokra vonatkoztatott tehetetlenségét:

ΘCM
rd =

1

12
ML2 (6.2.19)

Ha esetleg az érdekel minket, hogy egy rúd a középpontja helyett az egyik vége körül mennyire
ellenáll a forgatásokra, azt a párhuzamos tengelyek (Steiner) tétele alapján kapjuk:

Θvg
rd = ΘCM +Md2 =

L2

3
M (6.2.20)

Ha a jövőben szükség lenne rá, akkor ennek a tételnek a mátrixos alakja

Θ = ΘCM +M
(
δijd

2 − didj
)

(6.2.21)

6.3. példa: Tömeges Atwood gép

Vegyünk egy egyszerű Atwood gépet, m és M tömegekkel. Viszont most vegyük figyelembe, hogy a
csiga is forog: az µ tömegű, és R sugarú. Mik lesznek ekkor a mozgásegyenletek?
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A teljesen általános Lagrange-unk ezúttal:

L =
1

2
mẏ21 +

1

2
Mẏ22 +mgy1 +Mgy2 +

1

2
Θω2 (6.3.1)

Kiróhatunk viszont pár kényszert: mivel a kötél hossza fix, így

y2 = −y1 (6.3.2)

Vagy másképp kifejezve, a kötél minden pontja azonos sebességgel mozog, mert különben szétcsúszna:

|ẏ1| = |ẏ2| = |ẏ| (6.3.3)

A kötél pedig nem csúszhat el a csigán: tehát

ẏ = Rω (6.3.4)

Beírva még az előző feladatból a nyomatékot, a Lagrange-unk végső alakja:

L =
1

2
ẏ2(m+M) + g(m−M)y +

1

4
µẏ2 (6.3.5)

Ebből az Euler Lagrange eredménye:

ÿ

[
(m+M) +

1

2
µ

]
= g(m−M) (6.3.6)

Legyen most M = 2m, µ = m, amikkel

ÿ

[
3m+

1

2
m

]
= −gm (6.3.7)

ÿ =
2

7
g (6.3.8)

egy konstans gyorsulást tapasztalunk.

6.4. példa: Forgatott rúd

Vegyünk egy m tömegű, l hosszúságú rudat, rögzítsük az egyik végét a plafonhoz úgy, hogy forogni
tudjon, de másképp elmozdulni ne. Kezdjük el forgatni valamilyen állandó ω szögsebességgel a
felfüggesztési pontjától lehúzott vertikális tengely körül. Mi lesz a rúd vízszintessel bezárt szöge?

l,m

φ
ω

Kis emlékeztetőként
Θ =

1

3
ml2 (6.4.1)
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a tehetetlenség, a rúd végére merőleges forgatásokra. Itt a forgatás lefelé mutat: annak a rúdra
merőleges komponense

ω⊥ = ω sinφ (6.4.2)

ami a rúd végére vonatkoztatott forgatásoknak feleltethető meg. Itt hangsúlyoznám, hogy ω⊥ vektora
nem keverendő össze a rá ható erővel. Ez egy axiálvektor, a forgatás mit ő ír le jobbkéz-szabály
szerint adódik, és itt a képernyő felől az olvasó irányába mutat. Ha szépen szeretnénk kiszámolni a
feladatot, akkor tenzorosan és vektorosan kellene felírni a problémát, amiből ugyanaz fog kijönni.

φ
ω

ω∥

ω⊥

ω⊥

A potenciális tagunkban vehetjük a teljes tömeget a rúd közepébe, így

V = −mg
l

2
cosφ (6.4.3)

Tehát a Lagrange most:

L =
1

2
Θω2

⊥ +
1

2
mgl cosφ (6.4.4)

=
1

2

1

3
ml2ω2 sin2 φ+

1

2
mgl cosφ (6.4.5)

Erre ráküldve egy Euler-Lagrange-ot:

0 = −1

2
mgl sinφ+

2

6
ml2ω2 sinφ cosφ (6.4.6)

lesz a mozgásegyenlet.
Ennek egy lehetséges megoldása

sinφ = 0 −→ φ = 0 (6.4.7)

Ami teljesen logikus: azt írja le, hogy a rúd egyenesen lefelé lóg. Ezt letudva leoszthatunk vele, így

g =
2

6
lω2 cosφ (6.4.8)

cosφ =
3

2

g

l

1

ω2
(6.4.9)

Nevezzük el megszokásból a dolgokat:

cosφ =
3

2

ω2
0

ω2
(6.4.10)

Na de ez korlátos, −1 ≤ cos ≤ 1: csak akkor lesz ez a megoldás valid, ha

3

2

ω2
0

ω2
≤ 1 (6.4.11)

3

2
ω2
0 ≤ ω2 (6.4.12)

Minden más esetben csak a 0 kitérés lesz opció. A megoldás tehát úgy néz ki, hogy a forgatás
sebességét növelve egyszer csak elkezd a rúd kilengeni. Végtelen gyors forgatás esetén pedig
derékszöget tapasztalunk.
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