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7. óra

Hamiltoni mechanika

A Lagrange-i mechanikával már nagyon jól megbarátkoztunk. Ennek lényege tömören hogy egy
L(q, q̇, t) Lagrange-függvényből az E-L egyenletek segítségével megkapjuk a mozgásegyenletet va-
lamilyen q̈ = f(q, q̇) alakban. Ez egy szép, relatíve könnyen követhető lépésekből álló folyamat
eredménye, ami miatt hasznos és szemléletes.

Viszont a másodrendű diffegyenleteket nem szeretjük annyira, mint az elsőrendűeket. Sokkal
kezelhetőbb, ha ehelyett átírjuk a mozgásegyenletet kétszer annyi elsőrendű diffegyenletté. Ez a
Hamiltoni mechanika egyik előnye. A másik az, hogy a kvantummechanika is ezen a nyelven íródott,
szóval nem árt megbarátkozni vele klasszikusan is.

Hogy áttérjünk a Lagrange-i formalizmusból a Hamiltoniba, néhány egyszerű lépést kell csak
tennünk. Lagrange-függvény helyett most Hamilton-unk lesz:

H(q, p) = pT q̇(p)− L(q, q̇(p))

aminek a változói a(z általános) koordináta és az (általános) impulzus.
Az Euler-Lagrange egyenlet helyett most két darab Hamilton egyenletünk lesz, amikből megkapjuk

a két elsőrendű diffegyenletet:

q̇ =
∂H
∂p

ṗ = −∂H
∂q

A negatív előjel itt fontos, ne felejtsük el. Ha emlékezni akarunk rá, akkor idézzük vissza hogy
ṗ = F = −∇V .

7.1. példa: Egyszerű rugó

Nézzünk meg először egy egyszerű példát: egy sima, egy dimenziós rugót. Ennek a Lagrange-
függvénye ugyebár

L = K − V =
1

2
mẋ2 − 1

2
kx2 (7.1.1)

Hogy áttérjünk a Hamiltoni formalizmusra, először is kell valami jó p impulzusváltozó. Ez lehet a
már korábbról ismert általános impulzus:

p =
∂L
∂ẋ

= mẋ (7.1.2)

Tehát az egyenleteinkben ẋ = p
m lesz, így a Lagrange az általános koordinátával (q = x) és impulzussal

kifejezve:

L(q, q̇(p)) = 1

2
m

( p

m

)2
− 1

2
kq2 =

1

2m
p2 − 1

2
kq2 (7.1.3)

Beírva ezt, és pq̇-t a Hamiltoni definíciójába:

H(q, p) = p
p

m
− 1

2m
p2 +

1

2
kq2 (7.1.4)

H(q, p) =
1

2m
p2 +

1

2
kq2 (7.1.5)

Ha szemfülesek vagyunk, akkor feltűnhet, hogy ez pont a rendszer teljes E = K + V energiája. Ez
gyakran így van, de nem mindig. Részletes tárgyalást a Goldsteinben találunk, de nagyjából: ha
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konzervatív a potenciál, illetve nem függ a sebességektől, továbbá az általános koordináták kényszerei
időfüggetlenek, akkor H = E. Nekünk ez a legtöbb feladatban teljesül, de később még visszatérünk
rá egy kis általánosítással.

Mik lesznek ekkor a mozgásegyenletek? Egy-egy deriválás után:

q̇ =
∂H
∂p

=
p

m
− ṗ =

∂H
∂q

= kq (7.1.6)

Tehát

q̇ =
1

m
p ṗ = −kq (7.1.7)

Amit fel is írhatunk mátrixosan, kis gyakorlásként:

d
dt

(
q
p

)
=

(
0 1/m

−ω2 0

)(
q
p

)
(7.1.8)

Ahol ω2 = k
m . Ennek a feladatnak a megoldását persze már ismerjük: deriváljuk le még egyszer az

egyik Hamilton egyenletet.

q̈ =
1

m
ṗ = −ω2q (7.1.9)

Ezt már párszor megoldottuk:

q(t) = A cos (ωt+ φ) (7.1.10)
q̇(t) = −ωA sin (ωt+ φ) (7.1.11)

amit visszaírva megvan az impulzus is:

p(t) = −mωA sin (ωt+ φ) (7.1.12)

Ezt is fel lehet írni vektorosan: (
q
p

)
(t) = A

(
cos (ωt+ φ)

−mω sin (ωt+ φ)

)
(7.1.13)

Kicsit nézegetve ezt szét tudjuk kapni pár részre:(
q
p

)
(t) = A

(
1 0
0 −mω

)(
cos (ωt+ φ)
sin (ωt+ φ)

)
(7.1.14)

Rajzoljuk le ennek a mozgásnak a fázisterét! Ehhez képzeljünk el egy olyan koordinátarendszert,
aminek egyik tengelye q, a másik pedig p. Rakjuk le a tollunkat valamilyen kezdeti pontban, ami
megfelel a t = 0 pillanatnak, aztán ahogy telik az idő, kövessük le egy görbével azt, hogy melyik
pontokba halad tovább a rendszer. Ez a trajektória, amit a rendszerünk a mozgás során bejár.

A fenti példánkra ez relatíve egyszerű: van jobb oldalt egy körünk. Ez meg van szorozva egy
nyújtást (és tükrözést) végző mátrixxal, meg valami irreleváns konstanssal. Tehát a fázistér nem lesz
más, mint egy ellipszis. Gyakran szokás az A szabad paramétert lecserélni valamire, ami a kezdeti
feltételekből adott. Ez lehet például az energia: itt például ha a t = 0 pillanatban p = 0 és φ = 0
akkor

E = 0 +
1

2
mω2A2 cos2 (ωt+ φ) =

1

2
mω2A2 (7.1.15)

A = ±
√

2E

mω2
(7.1.16)
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Tehát az ellipszis szélei konstans energia mellett:

p
∣∣∣
q=0

= ∓mω

√
2E

mω2
= ∓

√
2mE (7.1.17)

q
∣∣∣
p=0

= ±
√

2E

mω2
(7.1.18)

Az pedig, hogy merre mutat az áramlás most fizikai intuícióból adódik. Ha jobbra (+) van kitérítve
a testünk, akkor onnan balra (−) fog gyorsulva visszarugózni. Tehát ha q pozitívból megy a negatív
felé, akkor p negatív. Fordítva is igaz: ha a jobb oldali szélső pont felé halad a testünk, de még nincs
ott, akkor pozitív lendülete lesz.

Harmonikus oszcillátor fázistere. Egy ellipszist látunk, aminek a két tengelye egyezik a fent kiszámí-
tottakkal.

7.2. példa: Csillapított oszcillátor

Nézzük meg ehhez képest, hogy mi lesz a csillapított oszcillátor mozgásegyenlete. Az ő Lagrange-a:

L =

(
1

2
mẋ2 − 1

2
mω2x2

)
eγt (7.2.1)

szép explicit időfüggést tartalmaz. De nem baj, attól még tudunk számolni, például egy kanonikus
impulzust:

p = mẋeγt ẋ =
1

m
e−γtp (7.2.2)

Szóval

pẋ(p) =
1

m
e−γtp2 (7.2.3)

L(x, ẋ(p)) = 1

2m
p2e−γt − 1

2
mω2x2eγt (7.2.4)
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Összerakva:

H(x, p) =
1

2m
p2e−γt +

1

2
mω2x2eγt (7.2.5)

ami nem a mechanikából szokásos energia. Annak az alakja Em = 1
2mẋ2 + V , szóval kis matekkal

H = Emeγt. Minden esetre a mozgásegyenletek még igazak:

ẋ =
1

m
pe−γt ṗ = −mω2xeγt (7.2.6)

Mit tudunk mondani ezeknek a megoldásáról? Nézzük meg először, hogy van-e fixpontja az egyenle-
teknek:

0 =
1

m
pe−γt → p = 0 (7.2.7)

0 = −mω2xeγt → x = 0 (7.2.8)

Van, méghozzá az origó. Kis mellébeszéléssel1 nézzük meg, stabil-e. Térítsük ki az egyensúlyi
pontból a rendszert egy kis ∆x és ∆p távolsággal. Ekkor:

ẋ =
1

m
e−γt∆p ṗ = −mω2eγt∆x (7.2.9)

Ha kellően sok idő eltelt, akkor e−γt ≈ 0, tehát az elsőt elhanyagolhatjuk. A második előjele pont
ellentétes a kitérítés irányával: ez a pont egy stabil vonzópont lesz. A fázistéren ezt fel tudjuk
rajzolni a sima oszcillátor alapján, csak egy különbséggel: a trajektóriák az origóba tartanak, miután
t ≠ 0. Attól függően, hogy túlcsillapított-e az oszcillátorunk; vagy keringenek körülötte párat, vagy
rögtön belezuhannak.

Csillapított oszcillátor fázistere. Láthatjuk, hogy úgy néz ki mint a sima eleinte: aztán a trajektóriák
belespiráloznak az origóba. Ez egyébként egy nagyon gyengén csillapított eset, jó sokat kering előtte.

1Az érdeklődőknek: igazából ez egy jó nagy mellébeszélés, aminek szinte semmi igazságalapja nincs. Valójában
a stabilitásvizsgálatot itt célszerűbb q − q̇ térben elvégezni, mert ott kiderül, hogy ez egy vonzó fixpont, mert a
fixpontban kiértékelt Jacobi sajátértékeinek valós része mindig negatív. A képzetes részeik pedig megadják a mozgás
oszcilláló mivoltját: ha eltűnnek, túlcsillapítást tapasztalunk.
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7.3. példa: Potenciálvölgyek

Nézzünk egy (talán már ismerős) egy dimenziós rendszert, amelynek potenciális energiája

V = A(q2 − v2)2 (7.3.1)

ahol v valamilyen konstans. Ekkor a Hamilton

H(q, p) =
p2

2m
+A(q2 − v2)2 (7.3.2)

A belőle fakadó egyenletek:

q̇ =
∂H
∂p

=
p

m
(7.3.3)

ṗ = −∂H
∂q

= −4Aq(q2 − v2) (7.3.4)

Milyen fixpontjai vannak ezeknek?

p0 = 0 (7.3.5)
q0 = 0 vagy q0 = ±v (7.3.6)

Fixpontból három fajta lehet:

• Vonzó, ami bevonzza a trajektóriákat. Ide tarthat a rendszer végtelen idő után.

• Taszító, ami taszítja a trajektóriákat. Itt nagyon nem akar lenni a rendszer.

• Nyeregpont, ami egyes irányokban vonz, másik irányokban pedig taszít.

Hogyan döntsük el egy pontról, hogy ő melyik? Sokféleképpen. Mi most a Lineáris Stabilitásvizsgálat
módszerét fogjuk megnézni. Eszerint, ha van egy egyenletrendszerünk, akkor annak tudjuk venni a
Jacobi mátrixát:

J =

(
∂q q̇ ∂pq̇
∂qṗ ∂pṗ

)
(7.3.7)

Amit ki tudunk értékelni egy-egy fixpontban.
Ezután ki kell számítani a fixpontban vett mátrix λ sajátértékeit:

• Ha ∀Re(λ) > 0, akkor taszító.

• Ha ∀Re(λ) < 0, akkor vonzó.

• Ha is-is, akkor nyeregpont.

+1 Illetve ha Im(λ) ̸= 0, akkor oszcilláló mozgást fogunk tapasztalni.

Most nézzük meg ezeknek a stabilitását rendesen! Ehhez szükségünk van a Jacobi mátrixra,
amely definíció szerint

d
dt

(
q
p

)
= f(q, p) (7.3.8)

J =

(
∂qf1 ∂pf1
∂qf2 ∂pf2

)
(7.3.9)
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tehát esetünkben

J =

(
0 1/m

−4A(q2 − v2)− 8Aq2 0

)
(7.3.10)

Őt kell kiértékelni a fixpontokban, majd kiszámolni a sajátértékeit. Először is q0 = v esetén

J
∣∣∣
q0=v

=

(
0 1/m

−8Av2 0

)
(7.3.11)

λ± = ±i

√
8A

m
v (7.3.12)

ezek képzetesek. Róluk több mindent nem tudunk mondani a lineáris stabilitásvizsgálattal: az
annyiban merül ki, hogy valami oszcilláló keringésre számítunk körülöttük.

Másrészt

J
∣∣∣
q0=0

=

(
0 1/m

4Av2 0

)
(7.3.13)

λ± = ±
√

4A

m
v (7.3.14)

amik valósak: az egyik pozitív, a másik negatív. Ez azt jelenti, hogy ő egy nyeregpont lesz: az
egyik irányból bevonzza, a másikban pedig kitaszítja a trajektóriákat. Meg tudjuk nézni még a
sajátvektorait is:

u+ ∝
(

1

v
√
4Am

)
u− ∝

(
1

−v
√
4Am

)
(7.3.15)

Amikről azt látjuk, hogy a taszítóhoz tartozó egy pozitív meredekségű egyenes irányába mutat, a
másik, vonzó irány pedig rá merőleges. Ezt össze tudjuk vetni a lenti, gép által generált ábrával:
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Rugós inga. Nekünk x helyett r, θ helyett φ lesz.

7.4. példa: Rugós inga

Véve egy l nyugalmi hosszúságú rugót, és azt felfüggesztve egy plafonra, a Lagrange-unk:

L(q, q̇) = 1

2
mṙ2 +

1

2
m(l + r)2φ̇2 +mg(l + r) cosφ− 1

2
mω2r2 (7.4.1)

Hogy áttérjünk a Hamiltoni formalizmusra, kellenek először is a kanonikus impulzusok, amikből
most kettő is lesz:

pr =
∂L
∂ṙ

= mṙ pφ =
∂L
∂φ̇

= m(l + r)2φ̇ (7.4.2)

Illetve ezeknek az invertálása, hogy ki tudjuk fejezni a sebességeket az impulzusokkal:

ṙ =
1

m
pr φ̇ =

1

m(l + r)2
pφ (7.4.3)

Tehát a Hamiltonhoz kellő tagok:

pT q̇(p) =
1

m
p2r +

1

m(l + r)2
p2φ (7.4.4)

L(q, q̇(q, p)) = 1

2m
p2r +

1

2m(l + r)2
p2φ +mg(l + r) cosφ− 1

2
mω2r2 (7.4.5)

Összekombinálva, a Hamilton:

H =
1

m
p2r +

1

m(l + r)2
p2φ − 1

2m
p2r −

1

2m(l + r)2
p2φ −mg(l + r) cosφ+

1

2
mω2r2 (7.4.6)

=
1

2m
p2r +

1

2m(l + r)2
p2φ −mg(l + r) cosφ+

1

2
mω2r2 (7.4.7)

Ebből a mozgásegyenleteket egy-egy deriválással kapjuk:

ṙ =
∂H
∂pr

=
1

m
pr φ̇ =

∂H
∂pφ

=
1

m

1

(l + r)2
pφ (7.4.8)

−ṗr =
∂H
∂r

= − 1

m

1

(l + r)3
p2φ −mg cosφ+mω2r −ṗφ =

∂H
∂φ

= mg(l + r) sinφ (7.4.9)
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Megkaptuk a négy differenciálegyenletet, ami leírja a mozgást. Hogy valamit ránézésre is tudjunk róla
mondani, nézzük meg, hogy van-e egyensúlyi pontja ezeknek, illetve ha igen, akkor hol. Egyensúly
akkor van, ha a fenti egyenletek mindegyike nulla, tehát:

0 =
1

m
pr 0 =

1

m

1

(l + r)2
pφ (7.4.10)

0 = − 1

m

1

(l + r)3
p2φ −mg cosφ+mω2r 0 = mg(l + r) sinφ (7.4.11)

Ezek szerint

pr = 0 pφ = 0 (7.4.12)

0 = − 1

m

1

(l + r)3
p2φ −mg cosφ+mω2r φ = nπ (7.4.13)

Innen az utolsó előtti a legbonyolultabb. Beleírva a többit (cosnπ = ±1, pφ = 0), azt látjuk,
hogy

0 = ∓mg +mω2r (7.4.14)

±g = ω2r (7.4.15)
g

r
= ±ω2 (7.4.16)

Két ilyen pont lesz tehát: az egyik lent φ = 0 irányban, a másik pedig fent ahol φ = π (most tegyük
fel, hogy nincs fal felette, vagy mágikusan át tud rajta haladni). Mindkét esetben a rugó ingaszerű
megnyúlása (g/L-es jellemző frekvenciája) kapcsolatban lesz a rugó saját frekvenciájával, egyedül az
iránya az ami eltér. Fent egy picit összenyomódik, lent pedig egy picit megnyúlik.

Wikipédiás ábra a rugós inga mozgásáról pár periódusra. Közel sem triviális, hogy mit csinál, a
fázisteréről itt találhatunk pár szép színes képet.

https://pubs.aip.org/aip/cha/article/34/2/023119/3266665/Characterization-of-a-spring-pendulum-phase-space
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7.5. példa: Kisrezgések

Erre nem nézünk meg specifikus példát, mert a következő az állítás: itt is ugyanúgy lehet kisrezgéseket
vizsgálni mátrixosan. A rezgéses Lagrange általános esetben:

L =
1

2
q̇TM q̇ − 1

2
qTD q (7.5.1)

Amiből kellenek nekünk a kanonikus impulzusok. Egy szimbolikus deriválással

p = M q̇ pT = q̇TM (7.5.2)

Amit invertálnunk kell, hogy megkapjuk a sebességeket az impulzusokkal kifejezve:

M−1p = q̇ pTM−1 = q̇T (7.5.3)

Beírva a Lagrange-ba:

L(q, q̇(p)) = 1

2
pTM−1MM−1p− 1

2
qTDq (7.5.4)

L(q, q̇(p)) = 1

2
pTM−1p− 1

2
qTDq (7.5.5)

Ehhez jön még hozzá
q̇T p = pTM−1p (7.5.6)

Amiket beírva:
H =

1

2
pTM−1p+

1

2
qTD q (7.5.7)

Ebből a Hamilton egyenletek egyszerűen deriválással kijönnek:

q̇ = M−1p ṗ = −D q (7.5.8)

Deriválva mégegyszer az elsőt (feltéve hogy M−1 konstans, mint például egy kisrezgés esetén), és
behelyettesítve a másodikat:

q̈ = M−1ṗ (7.5.9)

= −M−1D q (7.5.10)

egy ismerős egyenletet kapunk: innentől megint jöhetnek a normálmódusok, pont ahogy eddig.
Ami viszont hasznos még akkor is, ha nem rezgésekre vagyunk kíváncsiak, az a Hamiltonra való

áttérés mátrixos útja. Ha felírható ilyen mátrixos alakban a Lagrange (tehát négyzetesen szerepelnek
a sebességek benne, és "szépen" keverednek) akkor elég felírnunk a tömegmátrixot, és invertálnunk.
Például a fenti rugós ingára

M = m

(
1 0
0 (l + r)2

)
(7.5.11)

M−1 =
m

m2(l + r)2

(
(l + r)2 0

0 1

)
=

1

m(l + r)2

(
(l + r)2 0

0 1

)
(7.5.12)

K(q, p) =
1

2
pT M−1p =

p2r
2m

+
p2φ

2m(l + r)2
(7.5.13)

Ez meg tud spórolni nekünk pár deriválást, ha például egy sok dimenziós rendszerről beszélünk.
Azért a biztonság kedvéért érdemes a deriválgatással számolnunk még, főleg ha nem vagyunk biztosak
benne, hogy "szép"-e a Lagrange eléggé.
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