7. Ora

Hamiltoni mechanika

A Lagrange-i mechanikaval mar nagyon j6l megbaratkoztunk. Ennek lényege tomoren hogy egy
L(q, q,t) Lagrange-fiiggvénybdl az E-L egyenletek segitségével megkapjuk a mozgasegyenletet va-
lamilyen ¢ = f(q,q) alakban. Ez egy szép, relative konnyen kiévethets 1épésekbsl allo folyamat
eredménye, ami miatt hasznos és szemléletes.

Viszont a mésodrendd diffegyenleteket nem szeretjiik annyira, mint az elsérendteket. Sokkal
kezelhet6bb, ha ehelyett atirjuk a mozgéasegyenletet kétszer annyi elsérendii diffegyenletté. Ez a
Hamiltoni mechanika egyik elénye. A masik az, hogy a kvantummechanika is ezen a nyelven irodott,
szoval nem art megbaratkozni vele klasszikusan is.

Hogy attérjiink a Lagrange-i formalizmusbo6l a Hamiltoniba, néhany egyszerid 1épést kell csak
tenniink. Lagrange-fiiggvény helyett most Hamilton-unk lesz:

H(g.p) =p" 4(p) ~ L(g,4(p))

aminek a valtozoi a(z altalanos) koordinéta és az (altalanos) impulzus.
Az Euler-Lagrange egyenlet helyett most két darab Hamilton egyenletiink lesz, amikbdl megkapjuk
a két elsérendii diffegyenletet:

_ oM L oA
q4= aB b= aq

A negativ elGjel itt fontos, ne felejtsiik el. Ha emlékezni akarunk ra, akkor idézziik vissza hogy

p=F=-VV.

7.1. példa: Egyszerd rugo

Nézziink meg elGszor egy egyszerd példat: egy sima, egy dimenziés rugét. Ennek a Lagrange-
fliggvénye ugyebar
1 1
L=K-V= imfv2—§k‘x2 (7.1.1)
Hogy attérjiink a Hamiltoni formalizmusra, el6szor is kell valami jo p impulzusvéltoz6. Ez lehet a

mar kordbbroél ismert altalanos impulzus:

P=%: =
Tehat az egyenleteinkben & = - lesz, igy a Lagrange az altalanos koordinataval (¢ = x) és impulzussal
kifejezve:

ma (7.1.2)
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Beirva ezt, és p¢-t a Hamiltoni definiciojaba:

p Loy, 1
— _ Zk 7.1.4
H(ag,p) =p, - — 50"+ 5ka (7.1.4)

1L 5 1,4

_ Zk 7.1.5
Ha,p) = 5"+ 5ka (7.1.5)

Ha szemfiilesek vagyunk, akkor feltiinhet, hogy ez pont a rendszer teljes E = K + V energidja. Ez
gyakran igy van, de nem mindig. Részletes targyalast a Goldsteinben taldlunk, de nagyjabol: ha



konzervativ a potencial, illetve nem fligg a sebességektsl, tovabba az altalanos koordinatak kényszerei
idofiggetlenek, akkor H = E. Nekiink ez a legtobb feladatban teljesiil, de kés6bb még visszatériink
ra egy kis altalanositéssal.

Mik lesznek ekkor a mozgésegyenletek? Egy-egy derivalas utan:

. oM p oM

=== —p=—=k 7.1.6
= = m p=5, =k (7.1.6)
Tehat
.1 )
¢=—p p=—kq (7.1.7)
m

Amit fel is irhatunk méatrixosan, kis gyakorlasként:

H0-(5 )0

Ahol w? = % Ennek a feladatnak a megoldasat persze mar ismerjiik: derivaljuk le még egyszer az

egyik Hamilton egyenletet.
1 . 2

jg=—p=—wyq (7.1.9)
m
Ezt mar parszor megoldottuk:
q(t) = Acos (wt + ) (7.1.10)
G(t) = —wAsin (wt + ) (7.1.11)
amit visszairva megvan az impulzus is:
p(t) = —mwAsin (wt + @) (7.1.12)

Ezt is fel lehet irni vektorosan:

<zz> ) =4 <—r§zss(iﬁt(:fi) @) (7.1.13)

Kicsit nézegetve ezt szét tudjuk kapni par részre:

(q) (t)=A (1 0 ) (C9S (wt + *0)> (7.1.14)
D 0 —mw)/ \sin(wt+ @)

Rajzoljuk le ennek a mozgéasnak a fazisterét! Ehhez képzeljiink el egy olyan koordinatarendszert,
aminek egyik tengelye ¢, a mésik pedig p. Rakjuk le a tollunkat valamilyen kezdeti pontban, ami
megfelel a t = 0 pillanatnak, aztdn ahogy telik az id§, kovessiik le egy gorbével azt, hogy melyik
pontokba halad tovabb a rendszer. Ez a trajektoria, amit a rendszeriink a mozgés soran bejar.

A fenti példankra ez relative egyszerii: van jobb oldalt egy koriink. Ez meg van szorozva egy
nyujtast (és tlikrozést) végzs matrixxal, meg valami irrelevans konstanssal. Tehat a fazistér nem lesz
més, mint egy ellipszis. Gyakran szokas az A szabad paramétert lecserélni valamire, ami a kezdeti
feltételekbsl adott. Ez lehet példaul az energia: itt példaul ha a t = 0 pillanatban p =0 és o =0
akkor

1 1
E=0+ imw2A2 cos? (wt + ¢) = imw2A2 (7.1.15)
2K
A=+ (7.1.16)



Tehét az ellipszis szélei konstans energia mellett:

2F
4=0 V mw

2F
=4/ 7.1.18
q‘ p=0 mw? ( )
Az pedig, hogy merre mutat az dramlas most fizikai intuiciobol adodik. Ha jobbra (+) van kitéritve
a testiink, akkor onnan balra (—) fog gyorsulva visszarugozni. Tehat ha ¢ pozitivbol megy a negativ
felé, akkor p negativ. Forditva is igaz: ha a jobb oldali széls6 pont felé halad a testiink, de még nincs
ott, akkor pozitiv lendiilete lesz.

v2mE
F = konst.

e 1
mw?

Harmonikus oszcillator fazistere. Egy ellipszist 1atunk, aminek a két tengelye egyezik a fent kiszdmi-
tottakkal.

7.2. példa: Csillapitott oszcillator

Nézziik meg ehhez képest, hogy mi lesz a csillapitott oszcillator mozgasegyenlete. Az 6 Lagrange-a:

1 1
L= (Qm:iUQ — 2mw2x2> et (7.2.1)

szép explicit id6figgést tartalmaz. De nem baj, attol még tudunk szamolni, példaul egy kanonikus
impulzust:

p = mie t=—e (7.2.2)
Szoval
pi(p) = —ep? (7.2.3)
— 2.

1
L(z,z(p)) = —m1026_w - §mw2x267t (7.2.4)



Osszerakva:
H(x,p) = ine_Vt + lmwQaczew (7.2.5)
’ 2m 2 o
ami nem a mechanikabol szokasos energia. Annak az alakja F,, = %m:&Q + V, szoval kis matekkal

H = E,,e". Minden esetre a mozgasegyenletek még igazak:

1
&= —pe p = —mw’ze (7.2.6)
m

Mit tudunk mondani ezeknek a megoldasarol? Nézziik meg elészor, hogy van-e fixpontja az egyenle-
teknek:

1
0=—pe " =p=0 (7.2.7)

m
0=—mw?ze’ - 2=0 (7.2.8)

Van, méghozzé az origd. Kis mellébeszéléssel! nézziik meg, stabil-e. Téritsiik ki az egyenstlyi
pontbol a rendszert egy kis Ax és Ap tavolsaggal. Ekkor:

1
= —e M"Ap p=—mw?e’ Az (7.2.9)
m

Ha kellsen sok idé eltelt, akkor e ~ 0, tehat az els6t elhanyagolhatjuk. A masodik elGjele pont
ellentétes a kitérités iranyaval: ez a pont egy stabil vonzopont lesz. A fazistéren ezt fel tudjuk
rajzolni a sima oszcillator alapjan, csak egy kiilonbséggel: a trajektoridk az origdba tartanak, miutdn
t # 0. Attol fiiggden, hogy tulcsillapitott-e az oszcillatorunk; vagy keringenek koriilotte parat, vagy
rogton belezuhannak.

f\/% —
I @ ] 'U:Ht-

Csillapitott oszcillator fazistere. Lathatjuk, hogy tigy néz ki mint a sima eleinte: aztén a trajektoridk
belespiraloznak az origbba. Ez egyébként egy nagyon gyengén csillapitott eset, jo sokat kering elGtte.

! Az érdeklédsknek: igazabol ez egy jo nagy mellébeszélés, aminek szinte semmi igazsagalapja nincs. Valojaban
a stabilitasvizsgalatot itt célszertibb q¢ — ¢ térben elvégezni, mert ott kideriil, hogy ez egy vonz6 fixpont, mert a
fixpontban kiértékelt Jacobi sajatértékeinek valos része mindig negativ. A képzetes részeik pedig megadjak a mozgas
oszcillalé mivoltjat: ha elttinnek, tulcsillapitast tapasztalunk.



7.3. példa: Potencialvolgyek
Nézziink egy (talan méar ismerds) egy dimenzids rendszert, amelynek potencialis energiaja
V = A(g* — v*)? (7.3.1)

ahol v valamilyen konstans. Ekkor a Hamilton

2

p

H(g,p) = om + A(g® —v*)? (7.3.2)

A belgle fakad6 egyenletek:
0 P

A 7.3.3

=90 ~m (7.3.3)

. OH 22

p=——— =—4Aq(q° —v 7.3.4

i (* ~?) (73.4)
Milyen fixpontjai vannak ezeknek?
po=0
q =0 vagy qo = v

Fixpontbél hdrom fajta lehet:

e Vonzd, ami bevonzza a trajektoridkat. Ide tarthat a rendszer végtelen id§ utan.
e Taszito, ami taszitja a trajektoriakat. Itt nagyon nem akar lenni a rendszer.

e Nyeregpont, ami egyes irdnyokban vonz, mésik iranyokban pedig taszit.

Hogyan dontsiik el egy pontrél, hogy 6 melyik? Sokféleképpen. Mi most a Lineéris Stabilitdsvizsgalat
modszerét fogjuk megnézni. Eszerint, ha van egy egyenletrendszeriink, akkor annak tudjuk venni a

Jacobl matrixat:
g4 O, (J)
J =% P 7.3.7
- <6qp Opp ( )

Amit ki tudunk értékelni egy-egy fixpontban.
Ezutan ki kell szamitani a fixpontban vett matrix A sajatértékeit:

e Ha VRe(\) > 0, akkor taszito.
e Ha VRe(\) < 0, akkor vonzo.
e Ha is-is, akkor nyeregpont.
+1 Hletve ha Zm(\) # 0, akkor oszcillalo mozgést fogunk tapasztalni.

Most nézziik meg ezeknek a stabilitasat rendesen! Ehhez sziikségiink van a Jacobi méatrixra,
amely definici6 szerint

% <§> = [(a,p) (7.3.8)

_(O4ft  Opfi
J= <aZf2 8§f2> (7.3.9)



tehat esetiinkben

0 1/m
i = <_4A(q2 _ 02) _ 8Aq2 0 > (7310)

Ot kell kiértékelni a fixpontokban, majd kiszamolni a sajatértékeit. Elészor is gy = v esetén

0 1/m
T (—8AU2 /0 ) (7.3.11)

At = ii\/%v (7.3.12)
m

ezek képzetesek. Roluk t6bb mindent nem tudunk mondani a linearis stabilitasvizsgalattal: az
annyiban meriil ki, hogy valami oszcillalé keringésre szamitunk koriilottiik.

J

MAsrészt

4 Av? 0

A = +4/ 4, (7.3.14)
m

amik valésak: az egyik pozitiv, a masik negativ. Ez azt jelenti, hogy & egy nyeregpont lesz: az
egyik irdnyboél bevonzza, a masikban pedig kitaszitja a trajektoridkat. Meg tudjuk nézni még a

J| = < 0 1/m> (7.3.13)

sajatvektorait is:

Uy o (v\/iAim> U_ X <—v\/1m> (7.3.15)

Amikrdl azt latjuk, hogy a taszitohoz tartozé egy pozitiv meredekségii egyenes iranyaba mutat, a
mésik, vonz6 irdny pedig réd merGleges. Ezt 6ssze tudjuk vetni a lenti, gép altal generalt dbraval:
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Rugos inga. Nekiink z helyett r, 6 helyett ¢ lesz.

7.4. példa: Rugés inga
Véve egy [ nyugalmi hossztusagt rugot, és azt felfiiggesztve egy plafonra, a Lagrange-unk:

1 1 1
L(qg,q) = §m7’"2 + gm(l +7)29% + mg(l + 1) cos o — §mw2r2 (7.4.1)

Hogy attérjiink a Hamiltoni formalizmusra, kellenek el6szor is a kanonikus impulzusok, amikbdl
most kettd is lesz:

oL oL 9.
br= o =mi Py = 9 =m(l+7r)°¢ (7.4.2)

Illetve ezeknek az invertalasa, hogy ki tudjuk fejezni a sebességeket az impulzusokkal:

= 2 J— (7.4.3)
TP v m(l—i—r)?p@ o
Tehét a Hamiltonhoz kell6 tagok:
. 1 1
Pl () = —p; + mpi (7.4.4)
. 1 1 1
L(q,q4(q,p)) = %p?« + W?i +mg(l+r)cosp — §mw27’2 (7.4.5)
Osszekombinélva, a Hamilton:
L 1 2 L 5 1 2 L 9o
= Pt ———p? — —p? — ————p2 —myg(l - 7.4.6
H p m(l + r)zp“a om T 2m(l + r)2p‘p my(l+ 1) cosp + M (7.4.6)
_ 19 1 2 L 5 9
= 5P + 2m(l+r)2p¢ mg(l + 1) cosp + 5T (7.4.7)
Ebbdl a mozgasegyenleteket egy-egy derivalassal kapjuk:
oH 1 OH 1 1
= = — h = = — 7.48
r 8pr mpr 2 apr m (l + T)stﬁ ( )
. OH 1 1 . OH .
== —Empi — mg cos @ + mw?r —Pp = R =mg(l+r)sinp (7.4.9)



Megkaptuk a négy differencidlegyenletet, ami leirja a mozgast. Hogy valamit ranézésre is tudjunk réla
mondani, nézziik meg, hogy van-e egyenstlyi pontja ezeknek, illetve ha igen, akkor hol. Egyensily
akkor van, ha a fenti egyenletek mindegyike nulla, tehat:

1 11
0=— 0=——" 7.4.10
mPr m (I + r)zpw ( )

11
0= _Empi — mg cos o + maw’r 0=mg(l+r)sinep (7.4.11)

Ezek szerint
pr=0 Py =0 (7.4.12)
11

0= — T ypPe — mgcos e+ mun o =nm (7.4.13)

Innen az utols6 el6tti a legbonyolultabb. Beleirva a tébbit (cosnm = %1, p, = 0), azt latjuk,
hogy

0 = Fmg + mw?r (7.4.14)

+g = wir (7.4.15)
9 1? (7.4.16)
.

Két ilyen pont lesz tehat: az egyik lent ¢ = 0 irdnyban, a masik pedig fent ahol ¢ = 7 (most tegyiik
fel, hogy nincs fal felette, vagy magikusan at tud rajta haladni). Mindkét esetben a rugd ingaszerd
megnytlasa (g/L-es jellemzs frekvencidja) kapcsolatban lesz a rugd sajat frekvenciajaval, egyediil az
irdnya az ami eltér. Fent egy picit 6sszenyomodik, lent pedig egy picit megnyilik.

Wikipédids abra a rugbds inga mozgéasarél par periddusra. Kozel sem trivialis, hogy mit csinal, a
fazisterérol itt talalhatunk par szép szines képet.


https://pubs.aip.org/aip/cha/article/34/2/023119/3266665/Characterization-of-a-spring-pendulum-phase-space

7.5. példa: Kisrezgések

Erre nem néziink meg specifikus példat, mert a kovetkezs az allitas: itt is ugyanagy lehet kisrezgéseket
vizsgalni matrixosan. A rezgéses Lagrange altalanos esetben:

L= %QTﬂi - %QTQQ (7.5.1)
Amibdl kellenek nekiink a kanonikus impulzusok. Egy szimbolikus derivalassal
p=>Mjg ph=4q"M (7.5.2)
Amit invertalnunk kell, hogy megkapjuk a sebességeket az impulzusokkal kifejezve:
M™p=g pMT=4" (7.5.3)
Beirva a Lagrange-ba:
L(g,d(p)) = %BT%W:”B - %f& (7.5.4)
£(q.d(p) = 50" M~ 34" Dy (7.55)
Ehhez jon még hozzé
i'p=p"M"'p (7.5.6)
Amiket beirva: ) .
H=op'M 'p+ 54" Dg (7.5.7)
Ebbdl a Hamilton egyenletek egyszertien derivalassal kijonnek:
i=M"p p=-Dg (7.5.8)

Derivalva mégegyszer az els6t (feltéve hogy M ~1 konstans, mint példaul egy kisrezgés esetén), és
behelyettesitve a mésodikat:

j=M"p (7.5.9)
=-M"'Dgq (7.5.10)

IS

egy ismerds egyenletet kapunk: innent6l megint johetnek a normalmoédusok, pont ahogy eddig.

Ami viszont hasznos még akkor is, ha nem rezgésekre vagyunk kivancsiak, az a Hamiltonra vald
attérés matrixos utja. Ha felirhato ilyen matrixos alakban a Lagrange (tehat négyzetesen szerepelnek
a sebességek benne, és "szépen" keverednek) akkor elég felirnunk a tomegméatrixot, és invertalnunk.
Példaul a fenti rugds ingéra

M=m (é ' fr)2> (7.5.11)
9 m (I4+7r)? 0\ _ 1 (I+r)? 0
w = ot (07 ) s mme (7)) s
K(qp)zlpTM’lpz LA (7.5.13)
2= 25 = = 2m  2m(l+r)? o

Ez meg tud spoérolni nekiink par derivilast, ha példaul egy sok dimenziés rendszerrsl beszéliink.
Azért a biztonsag kedvéért érdemes a derivalgatassal szamolnunk még, f6leg ha nem vagyunk biztosak
benne, hogy "szép"-e a Lagrange eléggé.
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