8. Ora

Poisson zarojelek

Baratkozzunk kicsit a Poisson-zarojelekkel! Definicio szerint:

{f7 9} = aqfapg - 8pfaqg

ami jo, mert veliik le lehet irni egy tetszéleges barminek az id&fejlédését:

d
&f: i H} +0uf

Kiilonos szerepiik van még a Hamiltoni mechanikdban a kanonikus valtozék Poisson-zarojeleinek is.
Definici6 szerint, g és p akkor kanonikusak, ha:
0q; 0q;  0q; 0q;
{90} = 55— 552
g1 Opi Opi Oqu

=0
hasonloképp
Opi Op;  Op; Op;
q1 Opi b1 0qp
=0
illetve

{g,p;} = %% _ aQi%
R dq Opr  Op Oq
= 0udj — 0

8.1. példa: Perdiilet

Szamoljunk ki valami bonyolultabbat is, példaul a perdiiletek Poisson-zarojelét:

{L;, L;} =7 (8.1.1)
ahol
Li = el-jkxjpk (8.1.2)
Beirva:
OL; OL; OL;OL;
{Li,Lj} = ——L - —— (8.1.3)
dq Opr  Op Oq
Példaul az elsé: oL 5 9
i €ijkq5Pk q;
aq; = % = Ez‘jkpkafq]l = €;jkPK0jl = €ilkPk (8.1.4)
Teljesen hasonléan a tobbi is:
OL;:  Oe; 0
aplj _ j'ngmp(impn — ejmnqmai;; = €imidm (815)



Széval Gsszegezve:

{Lz’a Lj} = (Eilkpk)(ejlem) - (eipZQp)(ejlnpn)

= €lk€imIPkdm — €ipl€jinGdpPn

Hasznéaljuk ki, hogy
€oabCory = 5ax(sby - 5ay5bx (818)

Meg permutéljunk péarat ciklikusan, amivel

€ilk€jmIPkdm = €lik€limPkIm (8.1.9)
= 0ijOkmPkqm — OimOjkPkqm (8.1.10)
= 0ijPkdk — Pjdi (8.1.11)
Illetve a maésikra:
€ipl€5indpPn = €lip€lindpPn (8.1.12)
= 0ij0pnqpPn — Oindp;qpPn (8.1.13)
= 0ijqpPp — 5P (8.1.14)

Ebben van egy Osszegzett index: az nyugodtan atirhaté, mondjuk k-ra. Ezzel a teljes:

{Li, L} = 6ijpear — Pi%i — 0ijprdr + q;pi (8.1.15)
= qjPi — Pj4i (8.1.16)
= (0jndim — OjmOin)anPm (8.1.17)
= €gji€onmqnPm (8.1.18)
= €oji(€onmdnPm) (8.1.19)
= €0jiLo (8.1.20)
Tehét:
{Li,L;} = exjiLlr (8.1.21)

ami egy egészen nevezetes eredmény, jegyezziik meg.

Kanonikus transzformaciok

El6adason belattuk, hogy a Hamiltont nem csak egy fazistéren lehet vizsgalni: &t tudunk térni
masik koordinatékra, amelyekre szintén validak lesznek a Hamilton egyenletek; feltéve, hogy ez a
transzformécio kanonikus. Mikor kanonikus egy traf6 a g, p fazistérbdl a @, P fazistérre? Akkor, ha

{Qi, Pitqp = 0ij = {ai,pi}o,pP (8.1.22)
{Qi: Qjtep =L Pitep = 0={ai,qitq.r = {pipj}tor (8.1.23)

Tehat ha az 1tj koordinataknak a régiekben vett Poisson zarojelei kanonikusak. Az, hogy melyik a
régi és melyik az 1j, az nem szamit.

Ez nagyon hasznos tud lenni arra, hogy egy bonyolultnak tiiné feladatot atirjunk valami egysze-
riibbé. Nézziink erre is egy példat!



8.2. példa: Egy cstnya(?) Hamilton

Nézziink meg egy bonyolult Hamiltont, sejtsiink meg ra egy kanonikusnak vélt trafot, aztdn bizo-
nyitsuk be, hogy tényleg az is. Legyen a kalapbol kihtizott! Hamiltonunk:

1 2 2 1 . »
H= PP P — Cau? ((QP)Z +(QP) ) (8.2.1)

Ezt még alakitsuk kicsit. Tudjuk a logaritmikus azonossagokbol, hogy

In P9 = Q*In P (8.2.2)
Nletve
T —ix
cosx = % (8.2.3)
ilnx —ilnzx 7 —1
coslna = < re _rae (8.2.4)
2 2
Amivel . .
P) P)—t
cosln QP = (@P) +2(Q ) (8.2.5)
Tehat a Hamilton 1
H= 2—Q2P2 In? P — aw? cosIn (QP) (8.2.6)
a
Egy masik kalapbdl kihtzva, szép lenne a Hamilton, ha
p=QPIlnP ¢g=In(QP)=mm@Q@+InP (8.2.7)
Kanonikus-e ez a transzforméacié? Nézziik meg:
1 P 1
=— mP+—|——=-PlnP 8.2.8
wlor=g-Q(nPep) -5 P (5.2
=hP+1-InP=1 (8.2.9)
Ez teljesiil. A maésik kettd trivialis, de azért kiirva:
11 11
11t 11 8.2.10
{¢,4}q.p OP QP ( )
{p,p}op=PmP-QInP+1)—PlnP-QInP+1)=0 (8.2.11)
Tehéat a Hamilton az tgy rendszerben, szintén kanonikus valtozokkal:
P2
H = % aw? cos g (8.2.12)
2
= o mgR cos Q (8.2.13)

ami egy ismerGs rendszert ir le: az egyszeri ingat.

'Erdeklsdsknek: végtelen sok ilyen feladatot lehet gyartani (akar gyakorlasi céllal, akar egy ZH-ba) a generator-
fiiggvények segitségével. Tetszleges P (g, P) fiiggvényre megkaphatjuk az attranszformalt kanonikus valtozokat, két
derivalassal: |Q| = |0p®(q, P)|, |p| = |04®(q, P)| (hasonloképp példaul egy (g, Q)-ra, stb.). Az el§jelek attol fiiggnek,
hogy a generator hasaban melyik koordinatak vannak a régi illetve az 1j alakban.
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Teljes rendszervizgalat

Ezen modszerek birtokaban szinte méar barmit meg tudunk mondani. Nézziink most egy részletes
példat, amiben 6sszefoglalunk nagyjabol mindent ami kellhet egy tipikus feladat megoldasahoz.

8.3. példa: Minden egy helyen
8.3.1. Kanonikus transzformaciok

Vegylink egy képzelt rendszert, amely Hamilton fiiggvénye:
2

~ 2msin?Q

szeretnénk ezt megoldani, de ranézésre nem tiinik tal egyszertinek vagy szépnek. Ilyenkor mindig

megprobalkozhatunk (sokféleképpen) egy kanonikus transzformacio segitségével szebb alakra hozni a

Hamiltont. Azt, hogy hogyan tudjuk szebbé transzformalni izlés kérdés: itt a fizikai intuiciora ™ kell
hivatkoznunk.

e " + a(sin cos Q)%e (8.3.1)

Példaul ennél a rendszernél: én szeretném, hogy a kinetikus tagunkban csak a kanonikus impulzus
jelenjen meg. Szdval hasraiitésre legyen

P
= 8.3.2
P=Sin Q ( )
Ami majd kideriil, hogy nem teljesen jo, de azt is j6 megtanulni, hogy hogyan lehet korrigélni.Ezen
feliil a sin cos ) se tul szép: legyen

cos@Q =gq — Q) = arccosq (8.3.3)
amivel
P = psinarccosq = p\/1 — ¢2 (8.3.4)
Vajon ez kanonikus transzformacié-e? Nézziik meg a Poisson-zardjelek segitségével:

0Q OP 0Q 0P
P — = ..

1
=———\1-¢*-0 8.3.6
Noer e
=-1 (8.3.7)
Ez pont egy elGjellel tér el attol amit szeretnénk. Modositsuk a valtozdinkat tgy, hogy ez magjavuljon:
legyen példaul

P

= — 8.3.8
b sin @ ( )

amivel mar jok vagyunk. Ezen feliill meg illik még nézni a méasik két zardjelet is:

0Q0Q  0Q oQ
_ _ 8.3.9
=0-0=0 (8.3.10)
illetve az egy fokkal bonyolultabb:
oPoOP OPOP

P, P =——— - —— 8.3.11
P Plar =50 80 ~ p 0g (83.11)
SR S Sy N R - (8.3.12)

Ve Wi



Ez most még trivialis volt, de nem baj, ha gyakorlunk arra az esetre, amikor nem lesz az (t6bb
dimenzios esetben). Minden esetre belattuk, hogy ezzel a valtozocserével is kanonikusak maradunk:
érvényesek rajuk is a Hamilton egyenletek.

8.3.2. Hamilton egyenletek

Kihasznalva a fentieket, a traf6 utan a Hamiltonunk:

2
"= 2’4@—“ +asin?q e (8.3.13)
m

A feladat kedvéért most csalok egy kicsit: az el6z6 koordinatak alapjan ¢ csak +1 kozé eshetne.
Most demonstracios célokkal legyen g € [—m, 7|. Ezzel a megkotéssel tudjuk abrazolni a potencialis
energia exponenciélis lecsengés nélkiili részét:

15
W/a
1
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q

1. abra. Lecsengés nélkiili potenciélis energia.

Mit tudunk mondani a mozgasrél? Ehhez elGszor is érdemes felirnunk a mozgasegyenleteket:

OH OH
| = o )= ——— 8.3.14
mg=op et P = —2asingcosq et (8.3.15)

Megoldani ket természetesen mar mas tészta: numerikusan biztos lehetséges. Analitikusan és
vizualisan viszont anélkiil is tudunk mondani valamit, a fazisterek és a fixpontvizsgalat modszereinek
hasznalataval.

8.3.3. Fazistér

A fazistér felrajzoldsadhoz kelleni fog, hogy milyen kezdeti energiaval indult a rendszer. Legyen ez
most

2

H(t =0) = g—m tasin’q=a (8.3.16)



Mivel egy disszipativ rendszeriink van, az energia ennél csak kisebb lesz 2: a fazisteriink hatérai
tehat

2

2pim +asin®¢<a (8.3.17)
P
£ <a-—asin®q=acos’q (8.3.18)
2m
p2 < 2ma cos? q (8.3.19)
Ip| < V2ma| cosq| (8.3.20)
15
p/V2ma
05

2. abra. A fazisteriink hatarai egy adott kezdeti energiaval.

8.3.4. Fixpontvizsgalat

Van nekiink egy egyenletrendszeriink, mégpedig

g="L et (8.3.21)
m

p=—2singcosq e’ (8.3.22)

Az els6 relativve konnyt kérdés amit fel tudunk tenni: van-e ezeknek egy olyan pontja, amibe ha a
rendszer belekertil (akar mert odarakjuk, akar magatol) akkor ott is marad? Ezek a (qo, po) fixpontok,
amiket dgy kapunk, hogy a fenti egyenleteket nullava tessziik:

0="20 ¢t (8.3.23)
m
0= —2singpcosqy e’ (8.3.24)
Ennek megoldasai:
Po =0 (8.3.25)
Qo € {O,j:g,j:w} (8.3.26)

2Ezt mindjart be is latjuk.



A fixpontok bekategorizaldsa megy példaul a linearis stabilitasvizsgalattal. Csinédljuk ezt meg
most a mi egyenleteinkre! ElGszor is, a Jacobi:

0 e
= m 8.3.27
(—2€7t(COS2 q —sin?q) 0 ) ( )

s2 5 =0, tehat a Jacobi:

Il

Vegyiik ezt most a p = 0, ¢ = /2 pontban! Ott siHQ% =1, co

Ja= (0 5 (8.3.28)
Liw/2 — 267,5 0 .O.
Ennek a sajatértékei:
—At 2
A=t = 2 (8.3.29)
m m

Az egyik pozitiv, a méasik negativ: ez tehat egy nyeregpont lesz.
Nézziik meg ugyanezt a 0, £7 pontokban. Ott

0 e !
Jljp = <_2€7t m ) (8.3.30)

aminek a sajatértékei
2
M=-= 8.3.31
. 831

tisztan képzetesek. Na errél nem mondott semmit a linearis stabilitédsvizsgalat: nem is fog. 3 Itt
kivételesen tudunk viszont triikkozni egyet: a Hamiltoni mechanikdnkbél térjlink vissza a jo oreg
Lagrange-ira:

mi = pe "t — ype (8.3.32)
mi = —2sinqcosq — ype (8.3.33)

Es visszadézve a csillapitott oszcillatort:

oL
P=gi = mge (8.3.34)
tehét
m{ = —2sin g cos g — ymg (8.3.35)
Nevezziik el ¢-t mondjuk z-nek! Ekkor
q==z (8.3.36)
mz = —2sinqcosq — ymz (8.3.37)

Erre ugyanigy ra tudjuk kiildeni a fixpontvizsgalatot. A Jacobi itt:

_ ( , Y 1 ) (8.3.38)

—a(cos2 q — sin?q) —y

I~

31tt az érdeklédsknek ajanlom vagy a Center Manifold Theory moédszertanat, ha egy biztosabb médszerre kivancsiak;
vagy a Lyapunov stabilitast, ha kreativan tudnak megoldéasokat kihuzni egy kalapbol.



Amit mar nullaban (illetve £7-ben) kiértékelve kicsit méast kapunk:

2
A=y —-N)+—==0
m
2
M4+yd+==0
m
v 1 8
A = —— 4 =4 /42 — =
TV Ty

Barhogy nézziik,
pozitivva tenni a sajatértéket.

(8.3.39)

(8.3.40)

(8.3.41)

/2 - % kisebb lesz gammanal: még a plusszos megoldas esetében sem tudja
Tehat mindkett§ negativ: ezek a pontok vonzépontok lesznek.

Mindezeknek a tudataban fel tudjuk rajzolni a fazisteret, és ranézésre megmondani, hogy egy
tetsz6leges kezdeti feltételekbdl inditott ponttal nagyjabol mi fog torténni.
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3. abra. A rendszeriink fazistere, feltiintetve benne a fixpontokat és a trajektoriakat.

8.3.5. Idéfiigg6 mennyiségek

Fd -

Kivancsiak lehetiink ra, hogy ebben a rendszerben hogyan véltoznak a koordinatakon kiviil egyéb

dolgok is. Nézziik meg példaul, hogy hogyan valtozik a kinetikus tag az idében:

K ={K,H} + ;K

ahol

Szamoljuk ki a parciélis derivaltjat:

O K = —’yp—e_Vt =K
2m

(8.3.42)

(8.3.43)

(8.3.44)



illetve a Poisson zardjelét:

OK OH OK OH
K = — =
K, #) Oqg Op Op Oq

p _ .
= -2 . 2asingcos get
m

2a .
——psingcosq
m

Hasonloképp, a potencialis tagra:

8tV = ’)/V
oV OoH 0OV OH
V = - ——
v} dqg Op  Op Oq
VK
~ 9q Op
a .
= —psingcosgq
m
Kicsit atirva a dolgokat
2
K= %6_7t — p= V2mIeVt/?
m

%
V = asin? ge"t — sing =/ —e /2
a

Az utébbibél jon még, hogy
Vv
sing = 4/ e /2
a

. vV _
sin?qg=—e "t
a

coslg=1— —e
a

cosq =/ert — Ke_wt/Q
a

Ezeket beirva:

. 2 |V [,V
K = _Ea omKeV/? ge—vtﬂ 1-— Ee_wt/z — K

K= —2\/2aKV (e'Yt - V) e M2 K
m a

V= 2\/2“KV <6’Yt — V> e 24 AV
m a

(8.3.45)

(8.3.46)
(8.3.47)

(8.3.48)

(8.3.49)

(8.3.50)
(8.3.51)

(8.3.52)

(8.3.53)

(8.3.54)

(8.3.55)
(8.3.56)

(8.3.57)

(8.3.58)

(8.3.59)

(8.3.60)

(8.3.61)
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Ami szintén egy teljesen valid diffegyenlet-rendszer. Erdekes lehet még ehelyett az energidk E
Osszegét és A kiilonbségét is vizsgélni:

: d
E= &(K +V)=—(K-V) (8.3.62)
. d Vv

A= a(K -V)= —4\/2:;KV <th - a) e M2 YK +V) (8.3.63)

Kellsen sok idé utan ez kozelitsleg?
A=—~E (8.3.65)

tehéat

E=+%E A =~2A (8.3.66)

mind az Osszenergia, mind a kinetikus és potencialis energidk kiilonbsége exponenciélisan lecseng.

8.3.6. Periodusido

Legyen most v = 0! Tehéat
2

H=L" 1 asin?q (8.3.67)

2m
Ilyenkor csak keringés van: mennyi a frekvenciaja? Ehhez nézziink egy 0j koordinata trafot:

1
J = §£ pdg P=— pdg (8.3.68)
E=E, 27 E=E,

amit egy olyan korintegrallal definidlunk, ahol konstans az energia. A 2w itt konvenci6: elGadason
lemaradt, picit méas lesz a jelentése J-nek és P-nek (nem szokas amigy Gket megkiilonboztetni igy
bettikkel de az els6 a hatas a masodik pedig a redukalt hatas). Legyen a t = 0 pillanatban ez a
konsans energia valami F szam.

Ekkor, ha megmarad:

2
E= 2% +asin?q (8.3.69)
ami jo, mert a fenti integralba ki kell fejezniink
»?
E=o—+ asin® ¢ (8.3.70)
2 p?
E — asi =— 8.3.71
asin® q o ( )
p= :i:\/Zm(E’ — asin? q) (8.3.72)
most az élet egyszertisitése végett legyen
Et=0)=a (8.3.73)

4Sajnos nem feltétleniil igaz a kovetkezs harom egyenlet, mert elszamoltam valamit. Ett6l fiiggetleniil szép az
eredménye, szdval itthagyom. Ha a pici, akkor még kozelitéleg valid is.
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amivel
pt = £v/2mE cos? q (8.3.74)
p+ = =V2mE |cosq| (8.3.75)

Az integralhoz rajzoljuk fel, hogy hogyan néz ki egy periddus: elGszor legurulunk a lejtén, aztén
fel a masik oldalt, aztan pedig vissza ugyantgy. Tehat a ¢ koordinatankban elindulunk —3-t6l,
elmegyiink §-ig, aztan vissza. Mindez alatt milyen az impulzus irdnya? Amig meg nem fordulunk
a masodik dombtetén addig pozitiv, utana viszont negativ. Tehat az integralunk, és az 6 hatarai
hatarai:

J= }5 pdq (8.3.76)
E=EFEy
w/2 -7
:/ p+dq—|-/ p_dgq (8.3.77)
—7/2 ™
w/2 T
:/ /2p+dq—/ p_dgq (8.3.78)
w/2 ™
=/ / p+dq+/ p+dg (8.3.79)
—7/2 -7
/2
= 2/ / p+dg (8.3.80)
—7/2

Ezt méar csak el kell végezni. Amit kapunk:

/2
J =2V2mE |cosq|dg = 4V2mE (8.3.81)

—7/2
—
=2

egy konstans, ami egy jo impulzus valtozo: a kérdés az, hogy mi lesz a hozza tartozo Q ciklikus
koordinata.
Tegyiik fel, hogy kanonikusak. Ekkor

O = 57 =V (8.3.82)

Mi nekiink J, és vele a Hamilton?

J = 4vV2mE (8.3.83)

J? = 32mE (8.3.84)
1
= J? 8.3.85
32m ( )
tehat
: OF J 1 1 [2F

Ez lesz tehat a kérmozgas v frekvencidja. Vele a periodusidé egyszertien

1 m
T=-=4/-—= 3.
v 2F (8:3.87)
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