
1

8. óra

Poisson zárójelek

Barátkozzunk kicsit a Poisson-zárójelekkel! Definíció szerint:

{f, g} = ∂qf∂pg − ∂pf∂qg

ami jó, mert velük le lehet írni egy tetszőleges bárminek az időfejlődését:

d
dt

f = {f,H}+ ∂tf

Különös szerepük van még a Hamiltoni mechanikában a kanonikus változók Poisson-zárójeleinek is.
Definíció szerint, q és p akkor kanonikusak, ha:

{qi, qj} =
∂qi
∂ql

∂qj
∂pl

− ∂qi
∂pl

∂qj
∂ql

= 0

hasonlóképp

{pi, pj} =
∂pi
∂ql

∂pj
∂pl

− ∂pi
∂pl

∂pj
∂ql

= 0

illetve

{qi, pj} =
∂qi
∂ql

∂pj
∂pl

− ∂qi
∂pl

∂pj
∂ql

= δilδjl − 0

= δij

8.1. példa: Perdület

Számoljunk ki valami bonyolultabbat is, például a perdületek Poisson-zárójelét:

{Li, Lj} =? (8.1.1)

ahol

Li = ϵijkxjpk (8.1.2)

Beírva:

{Li, Lj} =
∂Li

∂ql

∂Lj

∂pl
− ∂Li

∂pl

∂Lj

∂ql
(8.1.3)

Például az első:
∂Li

∂ql
=

∂ϵijkqjpk
∂ql

= ϵijkpk
∂qj
∂ql

= ϵijkpkδjl = ϵilkpk (8.1.4)

Teljesen hasonlóan a többi is:

∂Lj

∂pl
=

∂ϵjmnqmpn
∂pl

= ϵjmnqm
∂pn
∂pl

= ϵjmlqm (8.1.5)
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Szóval összegezve:

{Li, Lj} = (ϵilkpk)(ϵjmlqm)− (ϵiplqp)(ϵjlnpn) (8.1.6)
= ϵilkϵjmlpkqm − ϵiplϵjlnqppn (8.1.7)

Használjuk ki, hogy
ϵoabϵoxy = δaxδby − δayδbx (8.1.8)

Meg permutáljunk párat ciklikusan, amivel

ϵilkϵjmlpkqm = ϵlikϵljmpkqm (8.1.9)
= δijδkmpkqm − δimδjkpkqm (8.1.10)

= δijpkqk − pjqi (8.1.11)

Illetve a másikra:

ϵiplϵjlnqppn = ϵlipϵljnqppn (8.1.12)
= δijδpnqppn − δinδpjqppn (8.1.13)

= δijqppp − qjpi (8.1.14)

Ebben van egy összegzett index: az nyugodtan átírható, mondjuk k-ra. Ezzel a teljes:

{Li, Lj} = δijpkqk − pjqi − δijpkqk + qjpi (8.1.15)
= qjpi − pjqi (8.1.16)

= (δjnδim − δjmδin)qnpm (8.1.17)
= ϵojiϵonmqnpm (8.1.18)

= ϵoji(ϵonmqnpm) (8.1.19)
= ϵojiLo (8.1.20)

Tehát:
{Li, Lj} = ϵkjiLk (8.1.21)

ami egy egészen nevezetes eredmény, jegyezzük meg.

Kanonikus transzformációk

Előadáson beláttuk, hogy a Hamiltont nem csak egy fázistéren lehet vizsgálni: át tudunk térni
másik koordinátákra, amelyekre szintén validak lesznek a Hamilton egyenletek; feltéve, hogy ez a
transzformáció kanonikus. Mikor kanonikus egy trafó a q, p fázistérből a Q,P fázistérre? Akkor, ha

{Qi, Pj}q,p = δij = {qi, pj}Q,P (8.1.22)
{Qi, Qj}q,p = {Pi, Pj}q,p = 0 = {qi, qj}Q,P = {pi, pj}Q,P (8.1.23)

Tehát ha az új koordinátáknak a régiekben vett Poisson zárójelei kanonikusak. Az, hogy melyik a
régi és melyik az új, az nem számít.

Ez nagyon hasznos tud lenni arra, hogy egy bonyolultnak tűnő feladatot átírjunk valami egysze-
rűbbé. Nézzünk erre is egy példát!
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8.2. példa: Egy csúnya(?) Hamilton

Nézzünk meg egy bonyolult Hamiltont, sejtsünk meg rá egy kanonikusnak vélt trafót, aztán bizo-
nyítsuk be, hogy tényleg az is. Legyen a kalapból kihúzott1 Hamiltonunk:

H =
1

2a
lnPQ2

lnPP 2 − 1

2
aω2

(
(QP )i + (QP )−i

)
(8.2.1)

Ezt még alakítsuk kicsit. Tudjuk a logaritmikus azonosságokból, hogy

lnPQ2
= Q2 lnP (8.2.2)

Illetve

cosx =
eix + e−ix

2
(8.2.3)

cos lnx =
ei lnx + e−i lnx

2
=

xi + x−i

2
(8.2.4)

Amivel

cos lnQP =
(QP )i + (QP )−i

2
(8.2.5)

Tehát a Hamilton
H =

1

2a
Q2P 2 ln2 P − aω2 cos ln (QP ) (8.2.6)

Egy másik kalapból kihúzva, szép lenne a Hamilton, ha

p = QP lnP q = ln (QP ) = lnQ+ lnP (8.2.7)

Kanonikus-e ez a transzformáció? Nézzük meg:

{q, p}Q,P =
1

Q
·Q

(
lnP +

P

P

)
− 1

P
· P lnP (8.2.8)

= lnP + 1− lnP = 1 (8.2.9)

Ez teljesül. A másik kettő triviális, de azért kiírva:

{q, q}Q,P =
1

Q

1

P
− 1

Q

1

P
= 0 (8.2.10)

{p, p}Q,P = P lnP ·Q(lnP + 1)− P lnP ·Q(lnP + 1) = 0 (8.2.11)

Tehát a Hamilton az úgy rendszerben, szintén kanonikus változókkal:

H =
p2

2a
− aω2 cos q (8.2.12)

=
p2

2mR2
−mgR cosQ (8.2.13)

ami egy ismerős rendszert ír le: az egyszerű ingát.
1Érdeklődőknek: végtelen sok ilyen feladatot lehet gyártani (akár gyakorlási céllal, akár egy ZH-ba) a generátor-

függvények segítségével. Tetszőleges Φ(q, P ) függvényre megkaphatjuk az áttranszformált kanonikus változókat, két
deriválással: |Q| = |∂PΦ(q, P )|, |p| = |∂qΦ(q, P )| (hasonlóképp például egy Φ(q,Q)-ra, stb.). Az előjelek attól függnek,
hogy a generátor hasában melyik koordináták vannak a régi illetve az új alakban.

https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Variational_Principles_in_Classical_Mechanics_(Cline)/15%3A_Advanced_Hamiltonian_Mechanics/15.03%3A_Canonical_Transformations_in_Hamiltonian_Mechanics
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Variational_Principles_in_Classical_Mechanics_(Cline)/15%3A_Advanced_Hamiltonian_Mechanics/15.03%3A_Canonical_Transformations_in_Hamiltonian_Mechanics
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Teljes rendszervizgálat

Ezen módszerek birtokában szinte már bármit meg tudunk mondani. Nézzünk most egy részletes
példát, amiben összefoglalunk nagyjából mindent ami kellhet egy tipikus feladat megoldásához.

8.3. példa: Minden egy helyen

8.3.1. Kanonikus transzformációk

Vegyünk egy képzelt rendszert, amely Hamilton függvénye:

H =
P 2

2m sin2Q
e−γt + a(sin cosQ)2eγt (8.3.1)

szeretnénk ezt megoldani, de ránézésre nem tűnik túl egyszerűnek vagy szépnek. Ilyenkor mindig
megpróbálkozhatunk (sokféleképpen) egy kanonikus transzformáció segítségével szebb alakra hozni a
Hamiltont. Azt, hogy hogyan tudjuk szebbé transzformálni ízlés kérdés: itt a fizikai intuícióra ™ kell
hivatkoznunk.

Például ennél a rendszernél: én szeretném, hogy a kinetikus tagunkban csak a kanonikus impulzus
jelenjen meg. Szóval hasraütésre legyen

p =
P

sinQ
(8.3.2)

Ami majd kiderül, hogy nem teljesen jó, de azt is jó megtanulni, hogy hogyan lehet korrigálni.Ezen
felül a sin cosQ se túl szép: legyen

cosQ = q −→ Q = arccos q (8.3.3)

amivel
P = p sin arccos q = p

√
1− q2 (8.3.4)

Vajon ez kanonikus transzformáció-e? Nézzük meg a Poisson-zárójelek segítségével:

{Q,P}q,p =
∂Q

∂q

∂P

∂p
− ∂Q

∂p

∂P

∂q
(8.3.5)

= − 1√
1− q2

√
1− q2 − 0 (8.3.6)

= −1 (8.3.7)

Ez pont egy előjellel tér el attól amit szeretnénk. Módosítsuk a változóinkat úgy, hogy ez magjavuljon:
legyen például

p = − P

sinQ
(8.3.8)

amivel már jók vagyunk. Ezen felül meg illik még nézni a másik két zárójelet is:

{Q,Q}q,p =
∂Q

∂q

∂Q

∂p
− ∂Q

∂p

∂Q

∂q
(8.3.9)

= 0− 0 = 0 (8.3.10)

illetve az egy fokkal bonyolultabb:

{P, P}q,p =
∂P

∂q

∂P

∂p
− ∂P

∂p

∂P

∂q
(8.3.11)

= − pq√
1− q2

√
1− q2 +

√
1− q2

pq√
1− q2

= 0 (8.3.12)
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Ez most még triviális volt, de nem baj, ha gyakorlunk arra az esetre, amikor nem lesz az (több
dimenziós esetben). Minden esetre beláttuk, hogy ezzel a változócserével is kanonikusak maradunk:
érvényesek rájuk is a Hamilton egyenletek.

8.3.2. Hamilton egyenletek

Kihasználva a fentieket, a trafó után a Hamiltonunk:

H =
p2

2m
e−γt + a sin2 q eγt (8.3.13)

A feladat kedvéért most csalok egy kicsit: az előző koordináták alapján q csak ±1 közé eshetne.
Most demonstrációs célokkal legyen q ∈ [−π, π]. Ezzel a megkötéssel tudjuk ábrázolni a potenciális
energia exponenciális lecsengés nélküli részét:

1. ábra. Lecsengés nélküli potenciális energia.

Mit tudunk mondani a mozgásról? Ehhez először is érdemes felírnunk a mozgásegyenleteket:

q̇ =
∂H
∂p

ṗ = −∂H
∂p

(8.3.14)

mq̇ = p e−γt ṗ = −2a sin q cos q eγt (8.3.15)

Megoldani őket természetesen már más tészta: numerikusan biztos lehetséges. Analitikusan és
vizuálisan viszont anélkül is tudunk mondani valamit, a fázisterek és a fixpontvizsgálat módszereinek
használatával.

8.3.3. Fázistér

A fázistér felrajzolásához kelleni fog, hogy milyen kezdeti energiával indult a rendszer. Legyen ez
most

H(t = 0) =
p2

2m
+ a sin2 q = a (8.3.16)
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Mivel egy disszipatív rendszerünk van, az energia ennél csak kisebb lesz 2: a fázisterünk határai
tehát

p2

2m
+ a sin2 q ≤ a (8.3.17)

p2

2m
≤ a− a sin2 q = a cos2 q (8.3.18)

p2 ≤ 2ma cos2 q (8.3.19)

|p| ≤
√
2ma| cos q| (8.3.20)

2. ábra. A fázisterünk határai egy adott kezdeti energiával.

8.3.4. Fixpontvizsgálat

Van nekünk egy egyenletrendszerünk, mégpedig

q̇ =
p

m
e−γt (8.3.21)

ṗ = −2 sin q cos q eγt (8.3.22)

Az első relatívve könnyű kérdés amit fel tudunk tenni: van-e ezeknek egy olyan pontja, amibe ha a
rendszer belekerül (akár mert odarakjuk, akár magától) akkor ott is marad? Ezek a (q0, p0) fixpontok,
amiket úgy kapunk, hogy a fenti egyenleteket nullává tesszük:

0 =
p0
m

e−γt (8.3.23)

0 = −2 sin q0 cos q0 eγt (8.3.24)

Ennek megoldásai:

p0 = 0 (8.3.25)

q0 ∈ {0,±π

2
,±π} (8.3.26)

2Ezt mindjárt be is látjuk.
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A fixpontok bekategorizálása megy például a lineáris stabilitásvizsgálattal. Csináljuk ezt meg
most a mi egyenleteinkre! Először is, a Jacobi:

J =

(
0 e−γt

m
−2eγt(cos2 q − sin2 q) 0

)
(8.3.27)

Vegyük ezt most a p = 0, q = π/2 pontban! Ott sin2 π
2 = 1, cos2 π

2 = 0, tehát a Jacobi:

J |π/2 =
(

0 e−γt

m
2eγt 0

)
(8.3.28)

Ennek a sajátértékei:

λ2 = 2eγt
e−γt

m
=

2

m
(8.3.29)

Az egyik pozitív, a másik negatív: ez tehát egy nyeregpont lesz.
Nézzük meg ugyanezt a 0,±π pontokban. Ott

J |π/2 =
(

0 e−γt

m
−2eγt 0

)
(8.3.30)

aminek a sajátértékei

λ2 = − 2

m
(8.3.31)

tisztán képzetesek. Na erről nem mondott semmit a lineáris stabilitásvizsgálat: nem is fog. 3 Itt
kivételesen tudunk viszont trükközni egyet: a Hamiltoni mechanikánkból térjünk vissza a jó öreg
Lagrange-ira:

mq̈ = ṗe−γt − γpe−γt (8.3.32)
mq̈ = −2 sin q cos q − γpe−γt (8.3.33)

És visszadézve a csillapított oszcillátort:

p =
∂L
∂q̇

= mq̇eγt (8.3.34)

tehát
mq̈ = −2 sin q cos q − γmq̇ (8.3.35)

Nevezzük el q̇-t mondjuk z-nek! Ekkor

q̇ = z (8.3.36)
mż = −2 sin q cos q − γmz (8.3.37)

Erre ugyanúgy rá tudjuk küldeni a fixpontvizsgálatot. A Jacobi itt:

J =

(
0 1

− 2
m(cos2 q − sin2 q) −γ

)
(8.3.38)

3Itt az érdeklődőknek ajánlom vagy a Center Manifold Theory módszertanát, ha egy biztosabb módszerre kíváncsiak;
vagy a Lyapunov stabilitást, ha kreatívan tudnak megoldásokat kihúzni egy kalapból.
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Amit már nullában (illetve ±π-ben) kiértékelve kicsit mást kapunk:

−λ(−γ − λ) +
2

m
= 0 (8.3.39)

λ2 + γλ+
2

m
= 0 (8.3.40)

λ± = −γ

2
± 1

2

√
γ2 − 8

m
(8.3.41)

Bárhogy nézzük,
√

γ2 − 8
m kisebb lesz gammánál: még a plusszos megoldás esetében sem tudja

pozitívvá tenni a sajátértéket. Tehát mindkettő negatív: ezek a pontok vonzópontok lesznek.
Mindezeknek a tudatában fel tudjuk rajzolni a fázisteret, és ránézésre megmondani, hogy egy
tetszőleges kezdeti feltételekből indított ponttal nagyjából mi fog történni.

3. ábra. A rendszerünk fázistere, feltüntetve benne a fixpontokat és a trajektóriákat.

8.3.5. Időfüggő mennyiségek

Kíváncsiak lehetünk rá, hogy ebben a rendszerben hogyan változnak a koordinátákon kívül egyéb
dolgok is. Nézzük meg például, hogy hogyan változik a kinetikus tag az időben:

K̇ = {K,H}+ ∂tK (8.3.42)

ahol

K =
p2

2m
e−γt (8.3.43)

Számoljuk ki a parciális deriváltját:

∂tK = −γ
p2

2m
e−γt = −γK (8.3.44)
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illetve a Poisson zárójelét:

{K,H} =
∂K

∂q

∂H
∂p

− ∂K

∂p

∂H
∂q

= (8.3.45)

= 0
∂K
∂p

− ∂K

∂p

∂V

∂q
= (8.3.46)

= − p

m
e−γt · 2a sin q cos qeγt (8.3.47)

= −2a

m
p sin q cos q (8.3.48)

Hasonlóképp, a potenciális tagra:
∂tV = γV (8.3.49)

{V,H} =
∂V

∂q

∂H
∂p

− ∂V

∂p

∂H
∂q

(8.3.50)

=
∂V

∂q

∂K

∂p
− 0 (8.3.51)

=
2a

m
p sin q cos q (8.3.52)

Kicsit átírva a dolgokat

K =
p2

2m
e−γt −→ p =

√
2mKeγt/2 (8.3.53)

V = a sin2 qeγt −→ sin q =

√
V

a
e−γt/2 (8.3.54)

Az utóbbiból jön még, hogy

sin q =

√
V

a
e−γt/2 (8.3.55)

sin2 q =
V

a
e−γt (8.3.56)

cos2 q = 1− V

a
e−γt (8.3.57)

cos q =

√
eγt − V

a
e−γt/2 (8.3.58)

Ezeket beírva:

K̇ = −2a

m

√
2mKeγt/2

√
V

a
e−γt/2

√
1− V

a
e−γt/2 − γK (8.3.59)

K̇ = −2

√
2
a

m
KV

(
eγt − V

a

)
e−γt/2 − γK (8.3.60)

V̇ = 2

√
2
a

m
KV

(
eγt − V

a

)
e−γt/2 + γV (8.3.61)
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Ami szintén egy teljesen valid diffegyenlet-rendszer. Érdekes lehet még ehelyett az energiák E
összegét és ∆ különbségét is vizsgálni:

Ė =
d
dt

(K + V ) = −γ(K − V ) (8.3.62)

∆̇ =
d
dt

(K − V ) = −4

√
2
a

m
KV

(
eγt − V

a

)
e−γt/2 − γ(K + V ) (8.3.63)

Kellően sok idő után ez közelítőleg4

Ė = −γ∆ (8.3.64)

∆̇ = −γE (8.3.65)

tehát

Ë = γ2E ∆̈ = γ2∆ (8.3.66)

mind az összenergia, mind a kinetikus és potenciális energiák különbsége exponenciálisan lecseng.

8.3.6. Periódusidő

Legyen most γ = 0! Tehát

H =
p2

2m
+ a sin2 q (8.3.67)

Ilyenkor csak keringés van: mennyi a frekvenciája? Ehhez nézzünk egy új koordináta trafót:

J =

˛
E=E0

pdq P =
1

2π

˛
E=E0

pdq (8.3.68)

amit egy olyan körintegrállal definiálunk, ahol konstans az energia. A 2π itt konvenció: előadáson
lemaradt, picit más lesz a jelentése J-nek és P -nek (nem szokás amúgy őket megkülönböztetni így
betűkkel de az első a hatás a második pedig a redukált hatás). Legyen a t = 0 pillanatban ez a
konsans energia valami E szám.

Ekkor, ha megmarad:

E =
p2

2m
+ a sin2 q (8.3.69)

ami jó, mert a fenti integrálba ki kell fejeznünk

E =
p2

2m
+ a sin2 q (8.3.70)

E − a sin2 q =
p2

2m
(8.3.71)

p = ±
√
2m(E − a sin2 q) (8.3.72)

most az élet egyszerűsítése végett legyen

E(t = 0) = a (8.3.73)
4Sajnos nem feltétlenül igaz a következő három egyenlet, mert elszámoltam valamit. Ettől függetlenül szép az

eredménye, szóval itthagyom. Ha a pici, akkor még közelítőleg valid is.
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amivel

p± = ±
√

2mE cos2 q (8.3.74)

p± = ±
√
2mE | cos q| (8.3.75)

Az integrálhoz rajzoljuk fel, hogy hogyan néz ki egy periódus: először legurulunk a lejtőn, aztán
fel a másik oldalt, aztán pedig vissza ugyanúgy. Tehát a q koordinátánkban elindulunk −π

2 -től,
elmegyünk π

2 -ig, aztán vissza. Mindez alatt milyen az impulzus iránya? Amíg meg nem fordulunk
a második dombtetőn addig pozitív, utána viszont negatív. Tehát az integrálunk, és az ő határai
határai:

J =

˛
E=E0

pdq (8.3.76)

=

ˆ π/2

−π/2
p+dq +

ˆ −π

π
p−dq (8.3.77)

=

ˆ π/2

−π/2
p+dq −

ˆ π

−π
p−dq (8.3.78)

=

ˆ π/2

−π/2
p+dq +

ˆ π

−π
p+dq (8.3.79)

= 2

ˆ π/2

−π/2
p+dq (8.3.80)

Ezt már csak el kell végezni. Amit kapunk:

J = 2
√
2mE

ˆ π/2

−π/2
| cos q|dq︸ ︷︷ ︸
=2

= 4
√
2mE (8.3.81)

egy konstans, ami egy jó impulzus változó: a kérdés az, hogy mi lesz a hozzá tartozó Q ciklikus
koordináta.

Tegyük fel, hogy kanonikusak. Ekkor

Q̇ =
∂H
∂J

= ν(J) (8.3.82)

Mi nekünk J , és vele a Hamilton?

J = 4
√
2mE (8.3.83)

J2 = 32mE (8.3.84)

E =
1

32m
J2 (8.3.85)

tehát

Q̇ = ν(J) =
∂E

∂J
=

J

16m
=

1

4m

√
2mE =

1

4

√
2E

m
(8.3.86)

Ez lesz tehát a körmozgás ν frekvenciája. Vele a periódusidő egyszerűen

T =
1

ν
= 4

√
m

2E
(8.3.87)
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