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9. óra

Hatás-szög változók

Amennyiben van egy H(q, p) rendszerünk ami szépen viselkedik (integrálható, kötöttek az állapotok,
nincs szeparátrix és explicit időfüggés) akkor létezik egy speckó kanonikus trafó a hatás-szög
változópárokba, amikkel

H(q, p) = H(P )

Ebben a (redukált) hatás változó nem más, mint egy fix energián vett pálya által bezárt fázistérfogat
(elosztva 2π-vel):

Pi =
1

2π

˛
E
pidqi

A mozgásegyenletek pedig jelentősen leegyszerűsödnek:

Ṗi = 0 és Q̇i =
∂H
∂P

= ω.

9.1. példa: Abszolútérték potenciál

Általában ilyenkor a periódusidőre vagy a hozzá tartozó frekvenciára vagyunk kíváncsiak. Legyen
például egy egydimenziós rendszerünk, aminek a potenciálja

V (x) = A|x| (9.1.1)

A Hamilton tehát

H =
p2

2m
+A|q| (9.1.2)

Feltéve, hogy az energia megmarad:

H = E =
p2

2m
+A|q| (9.1.3)

p2

2m
= E −A|q| (9.1.4)

p2 = 2mE − 2mA|q| (9.1.5)

p = ±
√

2mE − 2mA|q| = ±
√
2mE

√
1− A

E
|q| (9.1.6)

ami leírja a fázisterünkön a trajektóriákat, adott E mellett.
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Az energia a fordulópontban (ami legyen valami x = q = a) nem más, mint

E = Aa → a =
E

A
(9.1.7)

mivel ott nincs sebessége a tömegpontunknak. Egy periódus alatt tehát a bezárt terület

P =
1

2π

˛
E
pdq =

1

2π
4 ·
ˆ a

0
p(q)dq (9.1.8)

P =
1

2π
4
√
2mE

ˆ a

0

√
1− q

a
dq =

1

2π
4
√
2mE · 2

3
a (9.1.9)

Itt az integrál amúgy egy egyszerű 1− q
a → u változócserével jön ki.

Minden esetre:

P =
4

3π
a
√
2mE =

4

3π

√
2m

A
E3/2 (9.1.10)

Ahol figyeljünk, hogy a(E) függés is van, azt is vissza kellett írni. Ebből kell nekünk invertálni P (E)
függvényt E(P )-re:

P 2/3 =

(
4

3π

√
2m

A

)2/3

E (9.1.11)

E = H =

(
4

3π

√
2m

A

)−2/3

P 2/3 (9.1.12)

Tehát:

ω =
∂H
∂P

=

(
4

3π

√
2m

A

)−2/3

· 2
3
P−1/3 (9.1.13)

=
2

3

(
4

3π

√
2m

A

)−2/3(
4

3π

√
2m

A

)−1/3

E−1/2 (9.1.14)

=
π

2

A√
2mE

(9.1.15)
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9.2. példa: Hiperbolikus potenciál

Vizsgáljuk meg a

V (q) = −k
1

|q|
(9.2.1)

potenciált! Felrajzolva azt látjuk, hogy ez is periodikus mozgásokat okoz, ha az energia negatív. Mi
lesz ezeknek a frekvenciája?

Szisztematikusan kiindulva, írjuk fel a Hamiltont:

H =
p2

2m
− k

|q|
(9.2.2)

Majd fejezzük ki a lendületet konstans (negatív) energia mellett:

p2

2m
=

k

|q|
− |E| (9.2.3)

p2 = 2m
k

|q|
− 2m|E| (9.2.4)

p2 = −2m|E|
(
1− k

|E|
1

|q|

)
(9.2.5)

p2 = 2m|E|
(

k

|E|
1

|q|
− 1

)
(9.2.6)

p± = ±
√

2m|E|

√
k

|E|
1

|q|
− 1 (9.2.7)

Ezt szeretnénk majd kiintegrálni egy konstans energia által megadott zárt görbére. Mi lesz ez a
körintegrál? Először is kiindulhat a rendszer valamilyen (pozitív) a pontból, ahol nincs sebessége,
tehát p0 = 0. Ezt követően legurul a q = 0 pontba, majd fel a völgy másik oldalán −a-ig, mert
szimmetrikus a potenciálunk. Innen visszagurul, amíg el nem éri a kiindulási pontot. Ez szép
szimmetrikus: felbonthatjuk tehát a körintegrált 4 részre:

˛
E=E0

= 4 ·
ˆ 0

a
p−dq = 4 ·

ˆ a

0
p+dq (9.2.8)
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Amire szükségünk van, hogy mi lesz ez az a pont. Kifejezve az energiával, ebben a pontban nem
lesz kinetikus energiánk, tehát

E = − k

|a|
(9.2.9)

|E| = k

a
(9.2.10)

a =
k

|E|
(9.2.11)

Így a kiszámítandó integrál a hatáshoz:

J = 4 ·
ˆ k/|E|

0

√
2m|E|

√
k

|E|
1

q
− 1 dq (9.2.12)

Végezzünk el egy változócserét, amit két dolog motivál: egyrészt az integrál felső határa, másrészt
pedig az integrandusban megjelenő faktorok a q mellett:

u =
|E|
k

q du =
|E|
k

dq (9.2.13)

u0 = 1 dq =
k

|E|
du (9.2.14)

Ezzel az integrál nem lesz más, mint

J = 4
√
2m|E| k

|E|
·
ˆ 1

0

√
1

u
− 1du︸ ︷︷ ︸

=I

(9.2.15)

Ahol az integrál eredménye valamilyen szám. Ne is számoljuk ki, csak folytassuk az átalakítást:

J = 4
√
2mk

1√
|E|

I (9.2.16)
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Megfeleltetve az energiát a Hamiltonnak, ezt át tudjuk rendezni:

√
|E| = 4

√
2mkI

1

J
(9.2.17)

|E| = 32mk2I2
1

J2
(9.2.18)

H = −32mk2I2
1

J2
(9.2.19)

Ebben az alakban nem szerepel általános Q koordináta: J megmarad, így

Q̇ = konst. = ν =
∂H
∂J

(9.2.20)

Számítsuk is ezt ki:

ν = 2 · 32mk2I2J−3 (9.2.21)

ν = 2
32mk2I2(
4
√
2mkI

)3 |E|3/2 (9.2.22)

ν =
1

2
√
2m kI

|E|3/2 (9.2.23)

A teljesség jegyében még az integrált megoldhatjuk:

ˆ 1

0

√
1

u
− 1 du =

π

2
(9.2.24)

Így a végleges eredményünk a periódusidőre:

T =
1

ν
= π

√
2m k|E|−3/2 (9.2.25)

Adiabatikus invariáns

A hatás-szög változók amúgy is szépek, mert periodikus mozgásra egyszerűek, ciklikusra vezetnek.
Ezen felül van még egy hasznuk, akkor ha a rendszerünk egy paramétere lassan változik. A lassant
itt úgy értjük, hogy a rendszerre jellemző saját időhöz képest. Ez egy kicsit absztrakt, szóval hozzuk
közelebb. Vegyük a fenti példa alapján a hiperbolikus rendszer saját idejét, ha mondjuk E = 2.7 J,
k = 1 Jm, m = 1 kg. Ekkor

T = π
√
2m k|E|−3/2 ≈ 1 s

a részecske másodpercenként kering körbe körbe. Ehhez képest például ha a részecske tömegének
mondjuk egy óra alatt elpárolog a fele, akkor az kellően lassú.

Ekkor létezik egy olyan mennyiség, ami a lassú változás ellenére is állandó marad. Ez nem más,
mint maga a hatás-változó, amit ilyenkor adiabatikus invariánsnak nevezünk. Mivel ő állandó,
segíthet nekünk hogy azokat a paramétereket, amiktől ő függ, egymással kapcsolatba hozzuk: meg
tudjuk mondani például a fenti rendszerre, hogy mennyivel fog nőni az energiája, ha a k paraméter
vagy a tömeg változik.
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9.3. példa: Oszcillátor

Legyen

H =
1

2m

(
p2 +m2ω2(t)q2

)
(9.3.1)

ahol lassan változik a frekvencia! Kíváncsiak vagyunk, hogy mit tudunk mondani a rendszer
energiájáról, ha a frekvencia duplájára nő.

Kell először is az adiabatikus invariáns, ami maga a hatás:

J =

˛
pdq = 4

ˆ q0

0
p(q)dq (9.3.2)

valami zárt pályára. Ezt úgy kapjuk, hogy megnézzük az energiák abban a q0 pontban, ha a sebesség
nulla:

q0 =
2E

mω2
(9.3.3)

Illetve kell még maga a görbe, ami a lendület fix energiákra a koordináta függvényében:

p =
√
2mE

√
1− mω2

2E
q2 (9.3.4)

Összerakva, a hatás változónk

J = 4
√
2mE

ˆ q0

0

√
1− mω2

2E
q2dq (9.3.5)

Itt mindig jó ötlet az integrált valami fizikairól átírni valami pusztán matematikaira, ha lehetséges.
Ehhez változócserékkel próbálkozhatunk, itt például√

mω2

2E
q = u −→ dq =

√
2E

mω2
u (9.3.6)

ami után

J = 4
√
2mE

√
2E

mω2

ˆ 1

0

√
1− u2du (9.3.7)

P =
J

2π
=

E

ω

4

π

ˆ 1

0

√
1− u2du (9.3.8)

Mivel az integrál ebben pusztán egy szám, nem fog nekünk kelleni. Azért gyakorlásként megnéz-
hetjük:

u = sinw (9.3.9)
w = arcsinu (9.3.10)

dw
du

=
1√

1− u2
=

1

cosw
(9.3.11)

du = coswdw (9.3.12)

illetve a határokon

0 = sinw0 −→ w0 = 0 (9.3.13)

1 = sinw1 −→ w1 =
π

2
(9.3.14)
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ˆ 1

0

√
1− u2du =

ˆ π/2

0
cos2wdw (9.3.15)

Mi lesz ez, egy fél periódusra kiátlagolva? Hát, kihasználva, hogy

sin2+cos2 = 1 (9.3.16)

ami egy fél periódusra könnyen kiintegrálható

ˆ π/2

0
1 =

π

2
(9.3.17)

Na de ennek pont a fele kell: az integrál tehát

ˆ π/2

0
cos2wdw =

π

4
(9.3.18)

Visszaírva mindent:

P =
E

ω

4

π

π

4
=

E

ω
(9.3.19)

ami invariáns! Tehát az egyik változását kompenzálnia kell a másiknak, így

E ∝ ω (9.3.20)

Tehát ha megváltozik a frekvencia, mondjuk duplájára ω′ = 2ω, akkor

E

ω
=

E′

ω′ (9.3.21)

E′ =
E

ω
ω′ = 2E (9.3.22)

azt látjuk, hogy az energia is kétszeresére nő.

9.4. példa: Pattogó labda

Legyen egy jó lassú liftben pattogó labdánk, amivel felkúszunk a MOL torony tetejére. Ekkor
picit változni fog a gravitációs konstans az időben: a torony tetején g′ = 0.99995g lesz az értéke.
Viszont gyorsan pattogtatjuk a labdát: egy periódus alatt alig vehető észre g időfüggése. Ha
kezdetben 2 méter magasságban pattogott a labdánk, a torony tetején mekkora lesz az eltérése ettől
a pattogásoknak?

Ugyebár a Hamiltonunk, a szokásos K + V módon

H =
p2

2m
+mg(t)q (9.4.1)

Ami itt érdekes lehet, az a fázistér: itt igazából nem lehet negatív a kitérés, ezért csak a pozitív q
térfélen mozoghatunk. A maximális kitérés valamilyen h értéknél lesz, ahol nulla a lendület. Amikor
pedig nulla a kitérés, akkor kétféle sebességünk is lehet: vagy negatív, amikor éppen lefelé zuhan a
labda, vagy pozitív amikor már felpattant. A fázistér ezért egy háromszög lesz, ahol furcsamódon
elteleportál a trajektória az egyik csúcsból a másikba. Ne aggódjunk emiatt.
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Helyette számoljunk! Először is a lendület paraméterezése, illetve a megmaradó energia

p =
√
2mE

√
1− mg

2E
q (9.4.2)

E0 = mgh (9.4.3)

amiből

J =

˛
pdq = 2

√
2mE

ˆ h=E/(mg)

0

√
1− mg

2E
qdq (9.4.4)

Játszuk itt el megint az integrál dimenziótlanítását!

mg

2E
q = u → dq =

2E

mg
du (9.4.5)

u0 =
mg

2E
h → u0 =

1

2
(9.4.6)

J =

˛
pdq = 2

√
2mE

2E

mg

ˆ 1/2

0

√
1− udu (9.4.7)

= 2
√
2mE

2E

mg
· I (9.4.8)

= 4
√
2m−1/2E

3/2

g
· I (9.4.9)

Az integrál eredménye megint nem különösebben érdekes: ami számít, az

J ∝ E3/2

g
= konst. (9.4.10)

ergo
E ∝ g2/3 (9.4.11)

és mivel h ∝ E/g, így
h ∝ g−1/3 (9.4.12)

Visszatérve a kérdésre: ha g′ = 0.99995g, akkor

h

g−1/3
=

h′

g′−1/3
(9.4.13)

h′ = h
g
′−1/3

g−1/3
(9.4.14)

h′ = h

(
g
′

g

)−1/3

(9.4.15)

h′ ≈ 2.00003 m (9.4.16)

Tehát 0.3 milliméterrel pattogna magasabbra a labda. Érdekességképp ha mondjuk a Titanic
romjaihoz lemenve ismételnénk meg ezt a kísérletet, akkor ott már szinte mérhető, 8.1 milliméteres
kitérést tapasztalnánk, csak a másik irányba.
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Szimmetriák

Még a Poisson-zárójeleknél láthattuk, hogy egy tetszőleges bárminek az időfejlődése

ḟ = {f,H}

Mi van akkor, ha valaminek nincs időfejlődése? Ekkor ez egy konstans, tehát egy megmaradó
mennyiség. Ergo a Hamiltoni mechanika nyelvén azok lesznek a megmaradó mennyiségek, melyekre

{f,H} = 0

9.5. példa: Forgatások

Kezdjük valami egyszerűvel: nézzünk egy centrális potenciált 2D-ben

H =
1

2m

(
p2x + p2y

)
+ V (

√
x2 + y2) (9.5.1)

Lássuk be, hogy erre a forgatás egy szimmetria, és a hozzá tartozó megmaradó mennyiség a perdület.
Először is:

L = xpy − ypx (9.5.2)

tehát ami kell:

{L,H} = {(xpy − ypx),H} (9.5.3)
= {xpy,H} − {ypx,H} (9.5.4)
= x{py,H}+ {x,H}py − y{px,H} − {y,H}px (9.5.5)

Mik ezek a zárójelek? Először is, írjuk ki az elsőt

{py,H} =
∂py
∂x

∂H
∂px

− ∂py
∂px

∂H
∂x

+
∂py
∂y

∂H
∂py

− ∂py
∂py

∂H
∂y

(9.5.6)

ránézésre egyetlen egy lesz ami nem biztos, hogy nulla:

{py,H} = −∂py
∂py

∂H
∂y

(9.5.7)

= −1 · ∂V (
√
x2 + y2)

∂y
(9.5.8)

Menjünk tovább! Hasonlóképp

{x,H} = 1 · ∂H
∂px

(9.5.9)

= 1 · px
m

(9.5.10)

Amiből az első két tag:

{L,H} = −x∂yV +
pxpy
m

− y{px,H} − {y,H}px (9.5.11)

Kis szimmetriával, a másik kettőt be tudjuk tippelni:

{L,H} = −x∂yV +
pxpy
m

+ y∂xV − pxpy
m

(9.5.12)

= −x∂yV + y∂xV (9.5.13)
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A potenciál csak a távolságtól függ, valahogyan. Bárhogyan is teszi azt, abban benne lesz egy
közvetett függvényként való szerepe a gyökös kifejezésnek, tehát amikor azt deriváljuk

∂xV (
√
x2 + y2) ∝ x√

x2 + y2
(9.5.14)

∂yV (
√

x2 + y2) ∝ y√
x2 + y2

(9.5.15)

Összegezve ezek pont kiejtik egymást:

{L,H} = c ·

(
xy√

x2 + y2
− xy√

x2 + y2

)
= 0 (9.5.16)

ergo az L lendület egy megmaradó mennyiség.
Mit fog generálni? Ehhez nézzük meg, mik lesznek a megmaradó mennyiségünk parciális

deriváltjai

∂L

∂px
= −y (9.5.17)

∂L

∂py
= x (9.5.18)

∂L

∂x
= py (9.5.19)

∂L

∂y
= −px (9.5.20)

És ezzel felírjuk a "mozgásegyenleteket", mintha maga L lenne nekünk egy Hamilton, valami s
időszerű paraméterre. Ekkor, az s szerinti deriválást vesszővel jelölve:

x′ = −y y′ = x (9.5.21)
p′x = −py p′y = px (9.5.22)

ami egy szép diffegyenlet rendszer. Kicsit szórakozva vele:

x′′ = −y′ = −x p′′x = −p′y = −px (9.5.23)

x = R cosωs px = P cosωs (9.5.24)
y = R sinωs px = P sinωs (9.5.25)

Látjuk, hogy az s paraméter egy forgatást okoz. Ezt le lehet rajzolni szépen a fázistérben, ahogy
előadáson valószínűleg meg is tettétek.
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9.6. példa: 2D-s oszcillátor

Legyen

H =
1

2m
(p2x + p2y) +mω2(x2 + y2) (9.6.1)

Vegyük észre hogy
H = E1 + E2 (9.6.2)

szóval hatás-szöggel
H = ω(P1 + P2) (9.6.3)

szép egyszerű, de van más mód is.
Legyen egy szép mátrixunk, amelynek elemei

Aij =
1

2

(pipj
m

+mω2rirj

)
(9.6.4)

vegyük észre hogy

A11 = E1 A22 = E2 (9.6.5)

Kíváncsiak vagyunk még az offdiagonális elemre:

A12 = A21 =
1

2m

(
pxpy +m2ω2xy

)
(9.6.6)

ez vajon megmarad-e, mint az energiák?

{A12,H} =
∂A12

∂x

∂H

∂px
− ∂A12

∂px

∂H

∂x
+

∂A12

∂y

∂H

∂py
− ∂A12

∂py

∂H

∂y
(9.6.7)

=
ω2m

2
y · px

m
− ω2m

2
x · py

m
− ω2ypx + ω2ypy (9.6.8)

= 0 (9.6.9)

Megmarad!
Ha már ezt tudjuk, akkor szeretnénk valamilyen intuitív fizikai jelentést is társítani hozzá. Ehhez

gyötörjük kicsit

A2
12 =

1

4m2

(
pxpy +m2ω2xy

)2 (9.6.10)

=
1

4m2

(
p2xp

2
y +m4ω4x2y2 + 2m2ω2xypxpy

)
(9.6.11)

=
p2xp

2
y

4m2
+

m2ω4

4
x2y2 +

ω2

2
xypxpy (9.6.12)

=

(
p2x
2m

+mω2x2
)(

p2y
2m

+mω2y2

)
− ω2

4
(x2p2y + y2p2x) + 2

ω2

4
xypxpy (9.6.13)

= E1E2 −
ω2

4
(xpy − ypx)

2 (9.6.14)

= E1E2 −
ω2

4
L2 (9.6.15)

Tehát az energiákból és a lendületből tevődik össze, valamilyen csúnya módon.
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Szépítsük tovább! Legyen

S1 =
1

ω

A12 +A21

2
=

A12

ω
=

pxpy
2mω

+mω
xy

2
(9.6.16)

S2 =
1

ω

A22 −A11

2
=

1

4mω
(p2y − p2x) +

y2 − x2

4
mω (9.6.17)

Ezek egy rakat mozgásállandóból tevődnek össze: ők maguk is azok lesznek. Miért szebbek? Nézzük
meg a négyzetüket:

S2
1 =

A2
12

ω2
(9.6.18)

S2
2 =

E2
1 + E2

2 − 2E1E2

4ω2
(9.6.19)

Az előzőek alapján, mi lesz az összegük?

S2
1 + S2

2 =
E1E2

ω2
− 1

4
L2 +

E2
1 + E2

2 − 2E1E2

4ω2
(9.6.20)

=
1

4
L2 +

E2
1 + E2

2 + 2E1E2

4ω2
− 1

4
L2 (9.6.21)

=
1

4
L2 +

(E1 + E2)
2

4ω2
(9.6.22)

szóval vezessük be még a teljesség jegyében a harmadik testvérüket

S3 =
L

2
=

xpy − ypx
2

(9.6.23)

amivel már

S2
1 + S2

2 + S2
3 =

H2

4ω2
(9.6.24)

Mit mond ez? Egy adott energiára:

E = 2ω
√
S2
1 + S2

2 + S2
3 (9.6.25)

tudunk tekinteni egy 3D-s gömbfelületként az S-ek terében. Tudjuk viszont, hogy ezek megmaradó
mennyiségek: milyen szimmetria tartozik hozzájuk? A gömb már segít megtippelni. Nézzük meg
ehhez most a zárójeleiket egymással!

{S3, S1} =
1

2
{(xpy − ypx),

( pxpy
2mω

+mω
xy

2

)
} (9.6.26)

=
1

2

[
{xpy,

( pxpy
2mω

+mω
xy

2

)
} − {ypx,

( pxpy
2mω

+mω
xy

2

)
}
]

(9.6.27)

Innen két tagunk lesz, nézzük az elsőt:

{xpy,
( pxpy
2mω

+mω
xy

2

)
} =? (9.6.28)

= x{py,
( pxpy
2mω

+mω
xy

2

)
}+ {x,

( pxpy
2mω

+mω
xy

2

)
}py (9.6.29)
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Egy tagban lesz a derivált nem nulla:

= −x
∂py
∂py

∂

∂y

( pxpy
2mω

+mω
xy

2

)
+

∂x

∂x

∂

∂px

( pxpy
2mω

+mω
xy

2

)
py (9.6.30)

= −x
(
mω

x

2

)
+
( py
2mω

)
py (9.6.31)

= −mω
x2

2
+

p2y
2mω

(9.6.32)

=
1

2mω

(
−m2ω2x2 + p2y

)
(9.6.33)

A másik hasonlóan

{ypx,
( pxpy
2mω

+mω
xy

2

)
} =

1

2mω

(
−m2ω2y2 + p2x

)
(9.6.34)

Tehát összevonva:

{S3, S1} =
1

4mω

[
−m2ω2x2 + p2y +m2ω2y2 − p2x

]
(9.6.35)

=
1

4mω

[
p2y − p2x +m2ω2y2 −m2ω2x2

]
(9.6.36)

=
p2y − p2x
4mω

+
y2 − x2

4
mω (9.6.37)

= S2 (9.6.38)

Teljesen hasonló módon be lehet látni a másik kettőre is, így

{Si, Sj} = ϵijkSk (9.6.39)

Ami pont olyan, mint a forgatásokat generáló perdületek: ezek a megmaradó mennyiségek a fent
említett gömbön való forgatásokat generálják, mint szimmetriákat.

Most ehhez nem néztük meg direktben a hatásukat a fázistéren, helyette a Poisson-zárójelüket
számítottuk ki. Láthattuk, hogy ez pont olyan, mint a forgatásoké: erre hivatkozva mondhatjuk
azt, hogy ők is forgatnak. Kicsit precízebben szólva ugyanazt az algebrát tudják, mint a forgatások.
Ezeket az algebrákat maguk a zárójelek (kommutátorok) határozzák meg, mint

{Ti, Tj} = fk
ijTk (9.6.40)

ahol az fk
ij úgy nevezett struktúraállandók elmondanak nekünk mindent.
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