9. Ora

Hatas-sz6g valtozok

Amennyiben van egy (g, p) rendszeriink ami szépen viselkedik (integralhato, kétottek az allapotok,
nincs szeparatrix és explicit idéfiiggés) akkor létezik egy specké kanonikus traféo a hatas-szog
valtozoparokba, amikkel

H(g,p) = H(P)

Ebben a (redukalt) hatas valtozo nem mas, mint egy fix energian vett palya altal bezart fazistérfogat
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A mozgasegyenletek pedig jelentGsen leegyszertistédnek:
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(elosztva 2m-vel):

Pi =0 és QZ w.

9.1. példa: Abszolutérték potencial

—a

Altalaban ilyenkor a periédusidére vagy a hozza tartozo frekvenciara vagyunk kivancsiak. Legyen
példaul egy egydimenziés rendszeriink, aminek a potencialja

V(z) = Alz| (9.1.1)
A Hamilton tehéat )
p
=—+4A 9.1.2
H=L g (912)
Feltéve, hogy az energia megmarad:
p?
=F=—+A 1.
H 5, T Aldl (9.1.3)
P2
—=F-A 1.4
- o (91.4)
p? =2mE — 2mA|q| (9.1.5)
A
p=+\/2mE — 2mA|q| = £V2mEy/1 — Zlal (9.1.6)

ami leirja a fazisteriinkdn a trajektoridkat, adott E mellett.
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Az energia a fordulépontban (ami legyen valami x = ¢ = a) nem mas, mint

E
E=A4A1—a=— (9.1.7)
A
mivel ott nincs sebessége a tomegpontunknak. Egy peridodus alatt tehét a bezart tertilet
P—lyg d—1 /a()d (9.1.8)
= o Ep q= - ) plg)dq L
1 @ q 1 2
P=_—4V2mE 1—=dg=—4V2mE - -a (9.1.9)
27 0 a 2m 3

Itt az integral amigy egy egyszerti 1 — £ — u valtozocserével jon ki.
Minden esetre:
4 4 v/2m
P=_—"—aV?2 :77E'3/2 1.1
3o 3r A (9.1.10)
Ahol figyeljiink, hogy a(E) fiiggés is van, azt is vissza kellett irni. Ebbél kell nekiink invertalni P(E)
fiiggvényt E(P)-re:
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_ gy _ [ 2 Vvem 2/3
E=H= <37TA ) P (9.1.12)
Tehat:
OH 4 v2m\ g
_gn _ [ 2 veam . “p-1/3
w=>5 <3W 1 ) 3P (9.1.13)
—-2/3 -1/3
_ 2[4 vem 4 vam E2 (9.1.14)
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9.2. példa: Hiperbolikus potencial
Vizsgaljuk meg a
Vig) = —k— (9.2.1)

potencialt! Felrajzolva azt latjuk, hogy ez is periodikus mozgéasokat okoz, ha az energia negativ. Mi
lesz ezeknek a frekvencidja?
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Szisztematikusan kiindulva, irjuk fel a Hamiltont:

2
P k
H="——— 9.2.2
2m  |q| ( )

Majd fejezziik ki a lendiiletet konstans (negativ) energia mellett:

2
D k
— =" _|E 9.2.3
am I | (9.2.3)
k
p? = 2mW — 2m|E)| (9.2.4)
q
ko1
2
p* = —2m|E)| (1 — > (9.2.5)
1E] gl
ko1
2
=i (4 20) 90269
|E] |q]
ko1
+ = +/2m|E||| = — — (9.2.7)
1E] lq]

Ezt szeretnénk majd kiintegralni egy konstans energia altal megadott zart gorbére. Mi lesz ez a
korintegral? Elgszor is kiindulhat a rendszer valamilyen (pozitiv) a pontbdl, ahol nincs sebessége,
tehat pg = 0. Ezt kévetSen legurul a ¢ = 0 pontba, majd fel a vélgy masik oldaldn —a-ig, mert
szimmetrikus a potencidlunk. Innen visszagurul, amig el nem éri a kiindulédsi pontot. Ez szép
szimmetrikus: felbonthatjuk tehat a korintegralt 4 részre:

0 a
}ﬁ =4. / p_dg=4- / prdg (9.2.8)
E=FEy a 0



pP=+2mE
q
—G a
p=—vV2mE

Amire sziikségiink van, hogy mi lesz ez az a pont. Kifejezve az energiaval, ebben a pontban nem
lesz kinetikus energiank, tehét

k
k
B =~ (9.2.10)
k

Igy a kiszamitando integral a hatashoz:
k/|E|

J=4- V2m|E]| |E| dg (9.2.12)

Végezziink el egy valtozocserét, amit két dolog motival: egyrészt az integral fels6 hatara, masrészt
pedig az integrandusban megjelend faktorok a ¢ mellett:

2.1
U= A q du i dq (9.2.13)
k
=1 d —d 9.2.14
UuQ q= ] U ( )

Ezzel az integral nem lesz mas, mint
koot
J =4./2m|E|— - — —1du (9.2.15)
[El Jo Vu
—_————
=TI

Ahol az integral eredménye valamilyen szam. Ne is szidmoljuk ki, csak folytassuk az atalakitést:

J = 4\/2mk\/’1f’.7 (9.2.16)



Megfeleltetve az energiat a Hamiltonnak, ezt at tudjuk rendezni:

1
VIEl = 4v2mkI 5 (9.2.17)

1

|E| = 32mk>I? ¥E (9.2.18)
1
H= —32mk:212ﬁ (9.2.19)
Ebben az alakban nem szerepel altalanos ) koordinata: J megmarad, igy
. 0
Q =konst. =v = % (9.2.20)
Szamitsuk is ezt ki:
v=2-32mk*1*J 3 (9.2.21)
2mk*I>
v = 2(37”):,,|E|3/2 (9.2.22)
4v/2mkl
1
|E?/? (9.2.23)

Y oam kI

A teljesség jegyében még az integralt megoldhatjuk:

1
/ ,/1—1du:g (9.2.24)
0 u

Igy a végleges eredményiink a periodusidére:

1
T===mV2m k|E|73/? (9.2.25)
14

Adiabatikus invarians

A hatas-szog valtozok amugy is szépek, mert periodikus mozgésra egyszertek, ciklikusra vezetnek.
Ezen feliil van még egy hasznuk, akkor ha a rendszeriink egy paramétere lassan valtozik. A lassant
itt gy értjiik, hogy a rendszerre jellemz§ sajat id6hoz képest. Ez egy kicsit absztrakt, széval hozzuk
kozelebb. Vegyiik a fenti példa alapjan a hiperbolikus rendszer sajat idejét, ha mondjuk E = 2.7 J,
k=1Jm, m =1 kg. Ekkor

T =mV2m kB =~ 15

a részecske méasodpercenként kering korbe kérbe. Ehhez képest példaul ha a részecske tomegének
mondjuk egy o6ra alatt elparolog a fele, akkor az kellGen lasst.

Ekkor létezik egy olyan mennyiség, ami a lasst valtozas ellenére is 4llandé marad. Ez nem més,
mint maga a hatas-valtozo, amit ilyenkor adiabatikus invaridnsnak neveziink. Mivel 6 allando,
segithet nekiink hogy azokat a paramétereket, amiktsl & fiigg, egymassal kapcsolatba hozzuk: meg
tudjuk mondani példéul a fenti rendszerre, hogy mennyivel fog néni az energiéja, ha a k paraméter
vagy a tomeg valtozik.



9.3. példa: Oszcillator

Legyen

H= % (p2 + mw?(t)q?) (9.3.1)

ahol lassan valtozik a frekvencia' Kl’véncsiak vagyunk, hogy mit tudunk mondani a rendszer

Kell eloszor is az adiabatikus invarians, ami maga a hatas:

J = ygpdq = 4/OQOP(Q)dq (9.3.2)

valami zart palyara. Ezt Ggy kapjuk, hogy megnézziik az energidk abban a gy pontban, ha a sebesség

nulla:
2F

e 9.3.3
R — (9.3.3)

Illetve kell még maga a gorbe, ami a lendiilet fix energidkra a koordinata fiiggvényében:

2

Osszerakva, a hatéas valtozonk

q0 2
J = 4\/2mE/ 1- %Qqu (9.3.5)
0

Itt mindig j6 o6tlet az integralt valami fizikair6l atirni valami pusztan matematikaira, ha lehetséges.
Ehhez valtozocserékkel probalkozhatunk, itt példaul

mw? 2F
g = dg =/ — 9.3.6
op 1 1=V e ® (9:3.6)

[2E !
J =4V2mE 2/ V1—u?du (9.3.7)
mw 0
E4 [
= / V1—u2du (9.3.8)
T Jo

Mivel az integral ebben pusztén egy szam, nem fog nekiink kelleni. Azért gyakorlasként megnéz-
hetjiik:

ami utan

u = sinw (9.3.9)
w = arcsinu (9.3.10)

dw 1 1
—_— = = 9.3.11
du V1 — u2 cos w ( )
du = coswdw (9.3.12)

illetve a hatarokon

0 = sinwy — wo =0 (9.3.13)
l=sinw,  —  w= g (9.3.14)



/2
cos® wdw (9.3.15)

1 s
/ V1—u?du = /
0 0

Mi lesz ez, egy fél periddusra kidtlagolva? Hat, kihasznalva, hogy

sin? + cos® = 1 (9.3.16)

ami egy fél periddusra kénnyen kiintegralhato

/2
/ 1=7 (9.3.17)
0 2
Na de ennek pont a fele kell: az integral tehat
/2
/ cos?wdw = = (9.3.18)
0 4
Visszairva mindent:
EFi4m F
p-=-=2r _ = 9.3.19
wmd w ( )
ami invarians! Tehat az egyik valtozasat kompenzélnia kell a masiknak, igy
E xw (9.3.20)
Tehat ha megvaltozik a frekvencia, mondjuk duplajara w’ = 2w, akkor
E F
- == 9.3.21
w w! ( )
/ E /
EF=—w =2F (9.3.22)
w

azt latjuk, hogy az energia is kétszeresére nd.

9.4. példa: Pattogd labda

Legyen egy jo lassu liftben pattogd labdank, amivel felkiszunk a MOL torony tetejére. Ekkor
picit valtozni fog a gravitacios konstans az idében: a torony tetején ¢’ = 0.99995¢ lesz az értéke.
Viszont gyorsan pattogtatjuk a labdat: egy periddus alatt alig vehets észre g iddfiiggése. Ha
kezdetben 2 méter magassdgban pattogott a labdank, a torony tetején mekkora lesz az eltérése ettsl
a pattogasoknak?

Ugyebar a Hamiltonunk, a szokisos K + V moédon

2
H = 2% +mg(t)q (9.4.1)
Ami itt érdekes lehet, az a fazistér: itt igazabol nem lehet negativ a kitérés, ezért csak a pozitiv ¢
térfélen mozoghatunk. A maximalis kitérés valamilyen h értéknél lesz, ahol nulla a lendiilet. Amikor
pedig nulla a kitérés, akkor kétféle sebességiink is lehet: vagy negativ, amikor éppen lefelé zuhan a
labda, vagy pozitiv amikor méar felpattant. A fazistér ezért egy haromszog lesz, ahol furcsamédon
elteleportal a trajektoria az egyik csticsbol a mésikba. Ne aggédjunk emiatt.



Helyette szamoljunk! El6szor is a lendiilet paraméterezése, illetve a megmaradd energia

p=2mE, /1 - ;ng (9.4.2)

Ey = mgh (9.4.3)

h=E/(mg)
J = %pdq =2V2m / \/1— %qdq (9.4.4)

Jatszuk itt el megint az integral dimenziotlanitasat!

amibdl

mg 2F
— - = 4.
Spd = — dq mgdu (9.4.5)
1
up = ?gh - w=3 (9.4.6)
2 1/2
J = %pdq =2V2mE— V1 —wudu (9.4.7)
mg .Jo
2F
=2/2mE= . T (9.4.8)
mg
E3/2
= 42m™ VP (9.4.9)
g
Az integral eredménye megint nem kiilonosebben érdekes: ami szamit, az
3/2
J x = konst. (9.4.10)
g
ergo
E x ¢*3 (9.4.11)
és mivel h o< E/g, igy
hog™t/3 (9.4.12)
Visszatérve a kérdésre: ha g’ = 0.99995g, akkor
h h'
p _1/3
W o=h?— e (9.4.14)
-1/3
wen(9 (9.4.15)
g
h' ~ 2.00003 m (9.4.16)

Tehat 0.3 milliméterrel pattogna magasabbra a labda. Erdekességképp ha mondjuk a Titanic
romjaihoz lemenve ismételnénk meg ezt a kisérletet, akkor ott mér szinte mérhets, 8.1 milliméteres
kitérést tapasztalnank, csak a mésik irdnyba.



Szimmetriak
Még a Poisson-zarojeleknél lathattuk, hogy egy tetszéleges barminek az idéfejlédése
f={r#n

Mi van akkor, ha valaminek nincs id&fejlédése? Ekkor ez egy konstans, tehat egy megmaradd
mennyiség. Ergo a Hamiltoni mechanika nyelvén azok lesznek a megmarad6é mennyiségek, melyekre

{f, 1} =0

9.5. példa: Forgatasok

Kezdjiik valami egyszertivel: nézziink egy centralis potencialt 2D-ben

1
H=o (2 +pp) +V(Va2 +4?) (9.5.1)

Lassuk be, hogy erre a forgatas egy szimmetria, és a hozza tartozdé megmaradd mennyiség a perdiilet.
Elgszor is:

L = xpy — yps (9.5.2)
tehat ami kell:
{L,H} = {(apy — ypa), H} (9.5.3)
= {apy, H} — {yp., 1} (9.5.4)
= x{pyv H} + {l‘, H}py - y{pl‘a /H} - {y, ’H}px (9.5.5)

Mik ezek a zardjelek? Elgszor is, frjuk ki az elsét

_ Oy 01 Opy OH | Opy OH  Op, IH
e} =5, 9pr  Ope Oz | Dy Op, Oy Oy (5:58)

ranézésre egyetlen egy lesz ami nem biztos, hogy nulla:

Opy OH
JHY = ——2 =~ 9.5.7
[ 1 2
- 1. W(va? +y?) (9.5.8)
dy
Menjiink tovabb! Hasonloképp
OH
=1 .0.
(@) =1-5° (9.5.9)
Dz
=1.—= 0.1
- (9.5.10)

Amibdl az els6 két tag:

BBy e, 1Y — {y. s (9.5.11)

{L,H} = =20,V +
Kis szimmetriaval, a masik kett6t be tudjuk tippelni:
(LM} = —20,V + 222 o,y — 2Py (9.5.12)

m m

= —20,V + 40,V (9.5.13)
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A potenciél csak a tavolsagtol fligg, valahogyan. Barhogyan is teszi azt, abban benne lesz egy
kozvetett fliggvényként vald szerepe a gyokos kifejezésnek, tehat amikor azt derivaljuk

T
8;13‘/( \V x2 + y2) X \/Tin

(9.5.14)

Osszegezve ezek pont kiejtik egymast:

{L,H}=c- (Wﬁ = - \/;31 y2> —0 (9.5.16)

ergo az L lendiilet egy megmaradd mennyiség.
Mit fog generalni? KEhhez nézziikk meg, mik lesznek a megmaradé mennyiségiink parcialis
derivaltjai

gp[;c =—y (9.5.17)
g]f; =z (9.5.18)
g:[; = Py (9.5.19)
?95 = —p, (9.5.20)

Es ezzel felirjuk a "mozgasegyenleteket", mintha maga L lenne nekiink egy Hamilton, valami s
idGszerd paraméterre. Ekkor, az s szerinti derivalast vesszével jelolve:

¥ =—y y == (9.5.21)
Py = —Dy Py = Da (9.5.22)

ami egy szép diffegyenlet rendszer. Kicsit szorakozva vele:

" =—y =—z Py = —Dy = —Da (9.5.23)
x = Rcosws Pz = Pcosws (9.5.24)
y = Rsinws pz = Psinws (9.5.25)

Latjuk, hogy az s paraméter egy forgatast okoz. Ezt le lehet rajzolni szépen a fazistérben, ahogy
el6adason valdszintileg meg is tettétek.
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9.6. példa: 2D-s oszcillator

Legyen
1
H =5 —(pz +py) + mw’(@® + %)

Vegyiik észre hogy
H=F,+ Ey

szoval hatés-szoggel
H = w(P 1+ PQ)

szép egyszerd, de van mas mod is.
Legyen egy szép métrixunk, amelynek elemei

1 ;) .
A’L] = 5 (pi;/]z] + mw27'2'7”j>

vegyiik észre hogy

AH =F A22 = FE»

Kivancsiak vagyunk még az offdiagonélis elemre:

1 2, 2
Ap = Aoy = om (pxpy +miw fU?J)

ez vajon megmarad-e, mint az energiak?

0A2 OH  0ApdH 9Ap0H  9A1p0H

Ap,HY = + el
{Aw, 1} ox Opg Ops Ox Oy Opy Opy Oy
2 2
w*m p w’m p
=0y = -z 2 - yp, +wyp,
2 m 2 m
=0

Megmarad!

(9.6.1)

(9.6.2)

(9.6.3)

(9.6.4)

(9.6.5)

(9.6.6)

Ha mar ezt tudjuk, akkor szeretnénk valamilyen intuitiv fizikai jelentést is tarsitani hozza. Ehhez

gyotorjiik kicsit

1 2
A}, = T2 (pepy + m*w?zy)
1

= ) (pi,pz + m4w4:1:2y2 + 2m2w2xypzpy)

2,2 2, 4 2

_ Paby MW 5 9 W

= a2 + Tﬂf Yo+ ?JTZ/pxpy

2m 2m 4 4

2 2 2 2
p w w
— (pw + mw2x2> (y + mw2y2> _ 7(%2])2 + y2p3:) + 27xyp$py

(A)Q 2
= FE1Ey — T (xpy — ypz)

2
— BBy — WZLQ

Tehat az energidkbol és a lendiiletbdl tevédik Gssze, valamilyen cstinya modon.

(9.6.10)

(9.6.11)

(9.6.12)

(9.6.13)

(9.6.14)

(9.6.15)
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Szépitsiik tovabb! Legyen

_1Ap+An A pepy Ty

S = = —= 9.6.16
L 2 w 2mw e 2 ( )
1 Az — Ay 1,y 5 yP—a?
_1 _ _ 6.1
So " 5 pTo (py — pz) + 1w (9.6.17)

Ezek egy rakat mozgasallandobol tevdnek Gssze: 6k maguk is azok lesznek. Miért szebbek? Nézziik
meg a négyzetiiket:

A2
St =—3 (9.6.18)
E2 + E2 — 2B\,
2 1 2
_ 6.1
S2 2 (9.6.19)

Az el6z6ek alapjan, mi lesz az Gsszegilk?

E\Ey, 1 E? + E? - 2E\E
2 2 b1l 2 1 2 1£2
ST+ 855 = R ZL + 12 (9.6.20)
1 E? + E2 +2FE\E, 1
=2y — - L? 9.6.21
4 + 4w? 4 ( )
1 (B + E»)?
=_[ry == 9.6.22
4 + 402 ( )
szoval vezessiik be még a teljesség jegyében a harmadik testvériiket
L zpy — ypa
Sy == =¥ 2% 9.6.23
y= 5 =P (9.6.23)
amivel méar
2452452 H 9.6.24
S = .6.
11+55 + 03 102 ( )

Mit mond ez? Egy adott energiara:

E =2wy\/S? + 55+ 52 (9.6.25)

tudunk tekinteni egy 3D-s gombfeliiletként az S-ek terében. Tudjuk viszont, hogy ezek megmaradd
mennyiségek: milyen szimmetria tartozik hozzajuk? A gémb mar segit megtippelni. Nézziik meg
ehhez most a zarojeleiket egyméassal!

_ 1 . PzPy Yy

{53, 51} = S {(apy — ypa), <2mw +mws )} (9.6.26)
_1 PePy Ty, Puby zy
ey [{$py’ (2mw e >} {upe, (2mw e )}] (9.6.27)

Innen két tagunk lesz, nézziik az elsét:

DxDy %) _o 5

{apy, (2mw +mwos )} = (9.6.28)
Pzp Ty Dz Ty

= z{py, (2;5 + mw;)} + {=, (2;5 + mw?)}py (9.6.29)
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Egy tagban lesz a derivalt nem nulla:

= gy Gt )+ g (Gt e ),
=2 (m3) + () 7
2 2
Y + 2]7:’3;4)
= ﬁ (-mPw?a® + p)

A masik hasonloan

Dap xy 1
{yps, (2;15 - mw;)]’ —— (—m*w?y? + p2)

Tehat Osszevonvas:

1
{83,581} = T [—m2w2x2 +p§ + mPw?y? — pi]

1

- [pZQJ P2 mPuwy? - m2w2x2]
2 _ .2 2.2

I A

C dmw + 4 e

=5,

Teljesen hasonlé modon be lehet latni a masik kettére is, igy

{Si,S;} = €jkSk

(9.6.30)

(9.6.31)

(9.6.32)

(9.6.33)

(9.6.34)

(9.6.35)

(9.6.36)

(9.6.37)
(9.6.38)

(9.6.39)

Ami pont olyan, mint a forgatasokat generald perdiiletek: ezek a megmaradd mennyiségek a fent

emlitett gdmbon valéd forgatasokat generaljak, mint szimmetridkat.

Most ehhez nem néztiik meg direktben a hatasukat a fazistéren, helyette a Poisson-zarojeliiket
szamitottuk ki. Lathattuk, hogy ez pont olyan, mint a forgatasoké: erre hivatkozva mondhatjuk
azt, hogy 6k is forgatnak. Kicsit precizebben szolva ugyanazt az algebrdt tudjak, mint a forgatasok.

Ezeket az algebrakat maguk a zarojelek (kommutéatorok) hatarozzak meg, mint
(T, T3} = [5T

ahol az fl-’} agy nevezett struktiradllandok elmondanak nekiink mindent.

(9.6.40)
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